Skip to content
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
18 changes: 13 additions & 5 deletions fastdeploy/spec_decode/mtp.py
Original file line number Diff line number Diff line change
Expand Up @@ -708,7 +708,7 @@ def insert_prefill_inputs(self, req_dicts: List[Request], num_running_requests:
self.model_inputs["not_need_stop"][0] = True
self.model_inputs["seq_lens_this_time"] = self.seq_lens_this_time_buffer

def _initialize_forward_meta(self, step_use_cudagraph: bool = False):
def _initialize_forward_meta(self, step_use_cudagraph: bool = False, is_dummy_run: bool = False, substep: int = 0):
"""
Initialize forward meta and attention meta data
Copy link

Copilot AI Jan 6, 2026

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

The new parameters is_dummy_run and substep added to the function signature lack documentation in the docstring. The docstring should describe what these parameters represent, their expected types, and when they should be used to maintain consistency with Python documentation best practices.

Suggested change
Initialize forward meta and attention meta data
Initialize forward meta and attention meta data.
Args:
step_use_cudagraph (bool): Whether this step is allowed to use CUDA Graph
capture. The final decision also depends on runtime configuration such
as ``self.draft_model_use_cudagraph`` and the values of ``is_dummy_run``
and ``substep``.
is_dummy_run (bool): Indicates that the current call is part of a dummy
warm-up run used only for CUDA Graph capture and not a real decoding
step. When ``True`` together with ``substep > 0``, CUDA Graph capture
is disabled for this call.
substep (int): The index of the current substep in multi-step execution,
starting from 0. Only the first substep (0) can be captured by CUDA
Graph; later substeps reuse the captured graph and therefore should not
be captured again.

Copilot uses AI. Check for mistakes.
"""
Expand Down Expand Up @@ -744,7 +744,12 @@ def _initialize_forward_meta(self, step_use_cudagraph: bool = False):
for attn_backend in self.attn_backends:
attn_backend.init_attention_metadata(self.forward_meta)

self.forward_meta.step_use_cudagraph = step_use_cudagraph and self.draft_model_use_cudagraph
# Notes(liuzichang):
# 1. CUDA Graph capture sizes must be recorded in descending order (large → small).
# 2. In multi-step execution, only the first step should be captured.
self.forward_meta.step_use_cudagraph = (
step_use_cudagraph and self.draft_model_use_cudagraph and not (substep > 0 and is_dummy_run)
)

def _initialize_forward_meta_xpu(self):

Expand Down Expand Up @@ -929,7 +934,9 @@ def _propose_cuda(self, step_use_cudagraph: bool = False, is_dummy_run: bool = F
self.model_inputs["output_padding_offset"].copy_(output_padding_offset, False)

# Initialize forward meta data
self._initialize_forward_meta(step_use_cudagraph=step_use_cudagraph)
self._initialize_forward_meta(
step_use_cudagraph=step_use_cudagraph, is_dummy_run=is_dummy_run, substep=substep
)
self.forward_meta.batch_id_per_token.copy_(batch_id_per_token, False)

# Padding inputs for cuda graph
Expand All @@ -954,9 +961,10 @@ def _propose_cuda(self, step_use_cudagraph: bool = False, is_dummy_run: bool = F
top_p_normalized_logprobs=self.model_inputs["top_p_normalized_logprobs"],
share_inputs=self.model_inputs,
)

# Note(liuzichang):
# paddle.clone would raise error 700 in cudaGraph mode
if self.num_model_steps > 1:
self.last_seq_lens_this_time = paddle.clone(self.model_inputs["seq_lens_this_time"])
self.last_seq_lens_this_time.copy_(self.model_inputs["seq_lens_this_time"], False)
Comment on lines 966 to +967
Copy link

Copilot AI Jan 6, 2026

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

The implementation inconsistency between CUDA and XPU code paths could lead to maintenance issues. In the CUDA path (line 967), paddle.clone is replaced with copy_ to avoid CUDA Graph error 700, but the XPU path at line 1091 still uses paddle.clone. For consistency and to prevent potential issues if XPU also supports CUDA Graph in the future, consider using the same approach in both code paths.

Copilot uses AI. Check for mistakes.

model_output = self.model(
ids_remove_padding=self.model_inputs["ids_remove_padding"],
Expand Down
43 changes: 2 additions & 41 deletions fastdeploy/worker/gpu_model_runner.py
Original file line number Diff line number Diff line change
Expand Up @@ -2105,51 +2105,12 @@ def capture_model(self) -> None:
),
batch_size=int(capture_size / (self.speculative_config.num_speculative_tokens + 1)),
in_capturing=True,
expected_decode_len=self.speculative_config.num_speculative_tokens,
expected_decode_len=self.speculative_config.num_speculative_tokens * 2 + 1,
accept_all_drafts=True,
)
logger.info(
f"Warm up the Target model with the num_tokens:{capture_size}, expected_decode_len:{self.speculative_config.num_speculative_tokens}"
f"Warm up the model with the num_tokens:{capture_size}, expected_decode_len:{self.speculative_config.num_speculative_tokens}"
Copy link

Copilot AI Jan 6, 2026

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

The log message displays incorrect expected_decode_len value. The actual value used is self.speculative_config.num_speculative_tokens * 2 + 1 (line 2108), but the log message shows self.speculative_config.num_speculative_tokens. These should match for accurate logging.

Copilot uses AI. Check for mistakes.
)
if self.graph_opt_config.draft_model_use_cudagraph:
# Capture Draft Model without bsz 1
# NOTE(liujundong): expected_decode_len = 1, will affect mtp capture in cudagraph
for batch_size in sorted(capture_sizes, reverse=True):
if batch_size == 1:
logger.info("Skip token_num = 1, when capture Draft model for mtp")
else:
assert batch_size % 2 == 0
self._dummy_run(
num_tokens=(
self.scheduler_config.max_num_seqs
if self.scheduler_config.splitwise_role == "decode"
else self.scheduler_config.max_num_batched_tokens
),
batch_size=int(batch_size / 2),
in_capturing=True,
expected_decode_len=3,
accept_all_drafts=True,
)
logger.info(
f"Warm up the Draft model with the num_tokens:{batch_size}, expected_decode_len:{3}"
)
# Capture Draft Model with bsz 1
if 1 in capture_sizes:
self._dummy_run(
num_tokens=(
self.scheduler_config.max_num_seqs
if self.scheduler_config.splitwise_role == "decode"
else self.scheduler_config.max_num_batched_tokens
),
batch_size=int(1),
in_capturing=True,
expected_decode_len=3,
accept_all_drafts=False,
reject_all_drafts=True,
)
logger.info(
f"Warm up the Draft model with the num_tokens:{batch_size}, expected_decode_len:{3}"
)
else:
for batch_size in sorted(capture_sizes, reverse=True):
self._dummy_run(
Expand Down
Loading