Skip to content
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
59 changes: 59 additions & 0 deletions examples/vision/ppseg_unet.cc
Original file line number Diff line number Diff line change
@@ -0,0 +1,59 @@
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "fastdeploy/vision.h"
#include "yaml-cpp/yaml.h"

int main() {
namespace vis = fastdeploy::vision;

std::string model_file = "../resources/models/unet_Cityscapes/model.pdmodel";
std::string params_file =
"../resources/models/unet_Cityscapes/model.pdiparams";
std::string config_file = "../resources/models/unet_Cityscapes/deploy.yaml";
std::string img_path = "../resources/images/cityscapes_demo.png";
std::string vis_path = "../resources/outputs/vis.jpeg";

auto model = vis::ppseg::Model(model_file, params_file, config_file);
if (!model.Initialized()) {
std::cerr << "Init Failed." << std::endl;
return -1;
}

cv::Mat im = cv::imread(img_path);
cv::Mat vis_im;

vis::SegmentationResult res;
if (!model.Predict(&im, &res)) {
std::cerr << "Prediction Failed." << std::endl;
return -1;
} else {
std::cout << "Prediction Done!" << std::endl;
}

// 输出预测框结果
std::cout << res.Str() << std::endl;

YAML::Node cfg = YAML::LoadFile(config_file);
int num_classes = 19;
if (cfg["Deploy"]["num_classes"]) {
num_classes = cfg["Deploy"]["num_classes"].as<int>();
}

// 可视化预测结果
vis::Visualize::VisSegmentation(im, res, &vis_im, num_classes);
cv::imwrite(vis_path, vis_im);
std::cout << "Inference Done! Saved: " << vis_path << std::endl;
return 0;
}
1 change: 1 addition & 0 deletions fastdeploy/vision.h
Original file line number Diff line number Diff line change
Expand Up @@ -19,6 +19,7 @@
#include "fastdeploy/vision/meituan/yolov6.h"
#include "fastdeploy/vision/ppcls/model.h"
#include "fastdeploy/vision/ppdet/ppyoloe.h"
#include "fastdeploy/vision/ppseg/model.h"
#include "fastdeploy/vision/ultralytics/yolov5.h"
#include "fastdeploy/vision/wongkinyiu/yolor.h"
#include "fastdeploy/vision/wongkinyiu/yolov7.h"
Expand Down
1 change: 1 addition & 0 deletions fastdeploy/vision/__init__.py
Original file line number Diff line number Diff line change
Expand Up @@ -16,6 +16,7 @@
from . import evaluation
from . import ppcls
from . import ppdet
from . import ppseg
from . import ultralytics
from . import meituan
from . import megvii
Expand Down
22 changes: 22 additions & 0 deletions fastdeploy/vision/common/result.cc
Original file line number Diff line number Diff line change
Expand Up @@ -72,5 +72,27 @@ std::string DetectionResult::Str() {
return out;
}

void SegmentationResult::Clear() {
std::vector<std::vector<int64_t>>().swap(masks);
}

void SegmentationResult::Resize(int64_t height, int64_t width) {
masks.resize(height, std::vector<int64_t>(width));
}

std::string SegmentationResult::Str() {
std::string out;
out = "SegmentationResult Image masks 10 rows x 10 cols: \n";
for (size_t i = 0; i < 10; ++i) {
out += "[";
for (size_t j = 0; j < 10; ++j) {
out = out + std::to_string(masks[i][j]) + ", ";
}
out += ".....]\n";
}
out += "...........\n";
return out;
}

} // namespace vision
} // namespace fastdeploy
13 changes: 13 additions & 0 deletions fastdeploy/vision/common/result.h
Original file line number Diff line number Diff line change
Expand Up @@ -56,5 +56,18 @@ struct FASTDEPLOY_DECL DetectionResult : public BaseResult {
std::string Str();
};

struct FASTDEPLOY_DECL SegmentationResult : public BaseResult {
// mask
std::vector<std::vector<int64_t>> masks;

ResultType type = ResultType::SEGMENTATION;

void Clear();

void Resize(int64_t height, int64_t width);

std::string Str();
};

} // namespace vision
} // namespace fastdeploy
37 changes: 37 additions & 0 deletions fastdeploy/vision/ppseg/__init__.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,37 @@
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import absolute_import
import logging
from ... import FastDeployModel, Frontend
from ... import fastdeploy_main as C


class Model(FastDeployModel):
def __init__(self,
model_file,
params_file,
config_file,
backend_option=None,
model_format=Frontend.PADDLE):
super(Model, self).__init__(backend_option)

assert model_format == Frontend.PADDLE, "PaddleSeg only support model format of Frontend.Paddle now."
self._model = C.vision.ppseg.Model(model_file, params_file,
config_file, self._runtime_option,
model_format)
assert self.initialized, "PaddleSeg model initialize failed."

def predict(self, input_image):
return self._model.predict(input_image)
140 changes: 140 additions & 0 deletions fastdeploy/vision/ppseg/model.cc
Original file line number Diff line number Diff line change
@@ -0,0 +1,140 @@
#include "fastdeploy/vision/ppseg/model.h"
#include "fastdeploy/vision.h"
#include "fastdeploy/vision/utils/utils.h"
#include "yaml-cpp/yaml.h"

namespace fastdeploy {
namespace vision {
namespace ppseg {

Model::Model(const std::string& model_file, const std::string& params_file,
const std::string& config_file, const RuntimeOption& custom_option,
const Frontend& model_format) {
config_file_ = config_file;
valid_cpu_backends = {Backend::ORT, Backend::PDINFER};
valid_gpu_backends = {Backend::ORT, Backend::PDINFER};
runtime_option = custom_option;
runtime_option.model_format = model_format;
runtime_option.model_file = model_file;
runtime_option.params_file = params_file;
initialized = Initialize();
}

bool Model::Initialize() {
if (!BuildPreprocessPipelineFromConfig()) {
FDERROR << "Failed to build preprocess pipeline from configuration file."
<< std::endl;
return false;
}
if (!InitRuntime()) {
FDERROR << "Failed to initialize fastdeploy backend." << std::endl;
return false;
}
return true;
}

bool Model::BuildPreprocessPipelineFromConfig() {
processors_.clear();
YAML::Node cfg;
processors_.push_back(std::make_shared<BGR2RGB>());
try {
cfg = YAML::LoadFile(config_file_);
} catch (YAML::BadFile& e) {
FDERROR << "Failed to load yaml file " << config_file_
<< ", maybe you should check this file." << std::endl;
return false;
}

if (cfg["Deploy"]["transforms"]) {
auto preprocess_cfg = cfg["Deploy"]["transforms"];
for (const auto& op : preprocess_cfg) {
FDASSERT(op.IsMap(),
"Require the transform information in yaml be Map type.");
if (op["type"].as<std::string>() == "Normalize") {
std::vector<float> mean = {0.5, 0.5, 0.5};
std::vector<float> std = {0.5, 0.5, 0.5};
if (op["mean"]) {
mean = op["mean"].as<std::vector<float>>();
}
if (op["std"]) {
std = op["std"].as<std::vector<float>>();
}
processors_.push_back(std::make_shared<Normalize>(mean, std));

} else if (op["type"].as<std::string>() == "Resize") {
const auto& target_size = op["target_size"];
int resize_width = target_size[0].as<int>();
int resize_height = target_size[1].as<int>();
processors_.push_back(
std::make_shared<Resize>(resize_width, resize_height));
}
}
processors_.push_back(std::make_shared<HWC2CHW>());
}
return true;
}

bool Model::Preprocess(Mat* mat, FDTensor* output) {
for (size_t i = 0; i < processors_.size(); ++i) {
if (!(*(processors_[i].get()))(mat)) {
FDERROR << "Failed to process image data in " << processors_[i]->Name()
<< "." << std::endl;
return false;
}
}
mat->ShareWithTensor(output);
output->shape.insert(output->shape.begin(), 1);
output->name = InputInfoOfRuntime(0).name;
return true;
}

bool Model::Postprocess(const FDTensor& infer_result,
SegmentationResult* result) {
FDASSERT(infer_result.dtype == FDDataType::INT64,
"Require the data type of output is int64, but now it's " +
Str(const_cast<fastdeploy::FDDataType&>(infer_result.dtype)) +
".");
result->Clear();
Copy link
Collaborator

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

看这里是设定模型的输入是已经过完argmax,输出的int64的值,那在函数初始加一个判断吧

FDASSERT(infer_result.dtype == FDDataType::INT64, "Require the data type of output is int64, but now it's " + Str(infer_result.dtype) + ".");

std::vector<int64_t> output_shape = infer_result.shape;
int out_num = std::accumulate(output_shape.begin(), output_shape.end(), 1,
std::multiplies<int>());
const int64_t* infer_result_buffer =
reinterpret_cast<const int64_t*>(infer_result.data.data());
int64_t height = output_shape[1];
int64_t width = output_shape[2];
result->Resize(height, width);
for (int64_t i = 0; i < height; i++) {
int64_t begin = i * width;
int64_t end = (i + 1) * width - 1;
std::copy(infer_result_buffer + begin, infer_result_buffer + end,
result->masks[i].begin());
}

return true;
}

bool Model::Predict(cv::Mat* im, SegmentationResult* result) {
Mat mat(*im);
std::vector<FDTensor> processed_data(1);
if (!Preprocess(&mat, &(processed_data[0]))) {
FDERROR << "Failed to preprocess input data while using model:"
<< ModelName() << "." << std::endl;
return false;
}
std::vector<FDTensor> infer_result(1);
if (!Infer(processed_data, &infer_result)) {
FDERROR << "Failed to inference while using model:" << ModelName() << "."
<< std::endl;
return false;
}
if (!Postprocess(infer_result[0], result)) {
FDERROR << "Failed to postprocess while using model:" << ModelName() << "."
<< std::endl;
return false;
}
return true;
}

} // namespace ppseg
} // namespace vision
} // namespace fastdeploy
35 changes: 35 additions & 0 deletions fastdeploy/vision/ppseg/model.h
Original file line number Diff line number Diff line change
@@ -0,0 +1,35 @@
#pragma once
#include "fastdeploy/fastdeploy_model.h"
#include "fastdeploy/vision/common/processors/transform.h"
#include "fastdeploy/vision/common/result.h"

namespace fastdeploy {
namespace vision {
namespace ppseg {

class FASTDEPLOY_DECL Model : public FastDeployModel {
public:
Model(const std::string& model_file, const std::string& params_file,
const std::string& config_file,
const RuntimeOption& custom_option = RuntimeOption(),
const Frontend& model_format = Frontend::PADDLE);

std::string ModelName() const { return "ppseg"; }

virtual bool Predict(cv::Mat* im, SegmentationResult* result);

private:
bool Initialize();

bool BuildPreprocessPipelineFromConfig();

bool Preprocess(Mat* mat, FDTensor* outputs);

bool Postprocess(const FDTensor& infer_result, SegmentationResult* result);

std::vector<std::shared_ptr<Processor>> processors_;
std::string config_file_;
};
} // namespace ppseg
} // namespace vision
} // namespace fastdeploy
30 changes: 30 additions & 0 deletions fastdeploy/vision/ppseg/ppseg_pybind.cc
Original file line number Diff line number Diff line change
@@ -0,0 +1,30 @@
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "fastdeploy/pybind/main.h"

namespace fastdeploy {
void BindPPSeg(pybind11::module& m) {
auto ppseg_module =
m.def_submodule("ppseg", "Module to deploy PaddleSegmentation.");
pybind11::class_<vision::ppseg::Model, FastDeployModel>(ppseg_module, "Model")
.def(pybind11::init<std::string, std::string, std::string, RuntimeOption,
Frontend>())
.def("predict", [](vision::ppseg::Model& self, pybind11::array& data) {
auto mat = PyArrayToCvMat(data);
vision::SegmentationResult res;
self.Predict(&mat, &res);
return res;
});
}
} // namespace fastdeploy
8 changes: 8 additions & 0 deletions fastdeploy/vision/vision_pybind.cc
Original file line number Diff line number Diff line change
Expand Up @@ -19,6 +19,7 @@ namespace fastdeploy {
void BindPPCls(pybind11::module& m);
void BindPPDet(pybind11::module& m);
void BindWongkinyiu(pybind11::module& m);
void BindPPSeg(pybind11::module& m);
void BindUltralytics(pybind11::module& m);
void BindMeituan(pybind11::module& m);
void BindMegvii(pybind11::module& m);
Expand All @@ -42,8 +43,15 @@ void BindVision(pybind11::module& m) {
.def("__repr__", &vision::DetectionResult::Str)
.def("__str__", &vision::DetectionResult::Str);

pybind11::class_<vision::SegmentationResult>(m, "SegmentationResult")
.def(pybind11::init())
.def_readwrite("masks", &vision::SegmentationResult::masks)
.def("__repr__", &vision::SegmentationResult::Str)
.def("__str__", &vision::SegmentationResult::Str);

BindPPCls(m);
BindPPDet(m);
BindPPSeg(m);
BindUltralytics(m);
BindWongkinyiu(m);
BindMeituan(m);
Expand Down
Loading