Skip to content
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
32 changes: 22 additions & 10 deletions nlptest/nlptest.py
Original file line number Diff line number Diff line change
Expand Up @@ -291,7 +291,7 @@ def run(self) -> "Harness":

return self

def report(self, time_elapsed=False) -> pd.DataFrame:
def report(self, return_runtime=False, unit='ms') -> pd.DataFrame:
"""
Generate a report of the test results.

Expand Down Expand Up @@ -352,13 +352,14 @@ def report(self, time_elapsed=False) -> pd.DataFrame:
df_report = df_report.reset_index(drop=True)

self.df_report = df_report.fillna("-")
if time_elapsed:
self.df_report['time_elapsed'] = self.df_report['test_type'].apply(
lambda x: self._runtime.total_time()[x])
if return_runtime:
self.df_report[f'time_elapsed ({unit})'] = self.df_report['test_type'].apply(
lambda x: self._runtime.total_time(unit)[x])

return self.df_report
else:
df_final_report = pd.DataFrame()
time_elapsed = {}
for k, v in self.model.items():
for sample in self._generated_results[k]:
summary[sample.test_type]['category'] = sample.category
Expand Down Expand Up @@ -393,19 +394,23 @@ def report(self, time_elapsed=False) -> pd.DataFrame:

df_report = df_report.reset_index(drop=True)
df_report = df_report.fillna("-")
if time_elapsed:
self.df_report['time_elapsed'] = self.df_report['test_type'].apply(
lambda x: self._runtime.total_time()[x])


if return_runtime:
if k not in time_elapsed:
time_elapsed[k] = df_report['model_name'].apply(lambda x: self._runtime.multi_model_total_time(unit)[x])

df_final_report = pd.concat([df_final_report, df_report])



df_final_report['minimum_pass_rate'] = df_final_report['minimum_pass_rate'].str.rstrip(
'%').astype('float') / 100.0
pivot_minimum_pass_rate_df = df_final_report.pivot_table(
index='model_name', columns='test_type', values='minimum_pass_rate', aggfunc='mean')

df_final_report['pass_rate'] = df_final_report['pass_rate'].str.rstrip(
'%').astype('float') / 100.0

pivot_df = df_final_report.pivot_table(
index='model_name', columns='test_type', values='pass_rate', aggfunc='mean')

Expand All @@ -414,8 +419,15 @@ def color_cells(series):
for x in series.index:
res.append(df_final_report[(df_final_report["test_type"]==series.name) & (df_final_report["model_name"]==x)]["pass"].all())
return ['background-color: green' if x else 'background-color: red' for x in res]

styled_df = pivot_df.style.apply(color_cells)
if return_runtime:
time_elapsed_mean = {k: v.mean() for k, v in time_elapsed.items()}
df_time_elapsed = pd.DataFrame(list(time_elapsed_mean.items()), columns=['model_name', f'time_elapsed ({unit})'])
df_time_elapsed.set_index('model_name', inplace=True)
from IPython.display import display
display(df_time_elapsed)

return styled_df

def generated_results(self) -> Optional[pd.DataFrame]:
Expand Down
23 changes: 21 additions & 2 deletions nlptest/utils/custom_types/sample.py
Original file line number Diff line number Diff line change
Expand Up @@ -590,13 +590,32 @@ class RuntimeSample(BaseModel):
def __init__(self, **data):
super().__init__(**data)

def total_time(self):
def total_time(self, unit='ms'):
total = {}
if self.total:
return self.total
else:
for key in self.transform_time.keys():
total[key] = self.transform_time[key] + self.run_time[key]
total[key] = self.convert_ns_to_unit(
self.transform_time[key] + self.run_time[key],
unit=unit)
self.total = total
return total

def convert_ns_to_unit(self, time, unit='ms'):
unit_dict = {'ns': 1, 'us': 1e3, 'ms': 1e6, 's': 1e9, 'm': 6e10, 'h': 3.6e12}
return time / unit_dict[unit]

def multi_model_total_time(self, unit='ms'):
total = {}
if self.total:
return self.total
else:
for key in self.transform_time.keys():
total[key] = self.convert_ns_to_unit(
sum(self.transform_time[key].values()) + sum(self.run_time[key].values()),
unit=unit)
self.total = total
return total