Skip to content

Conversation

@jmoralez
Copy link
Contributor

@jmoralez jmoralez commented Dec 5, 2024

Adds the refit argument to NixtlaClient.cross_validation to control whether to finetune on all windows or just the first one. This will help speeding up the cross validation process.

@review-notebook-app
Copy link

Check out this pull request on  ReviewNB

See visual diffs & provide feedback on Jupyter Notebooks.


Powered by ReviewNB

@github-actions
Copy link
Contributor

github-actions bot commented Dec 5, 2024

Experiment Results

Experiment 1: air-passengers

Description:

variable experiment
h 12
season_length 12
freq MS
level None
n_windows 1

Results:

metric timegpt-1 timegpt-1-long-horizon SeasonalNaive Naive
mae 12.6793 11.0623 47.8333 76
mape 0.027 0.0232 0.0999 0.1425
mse 213.936 199.132 2571.33 10604.2
total_time 2.283 1.735 0.0057 0.0034

Plot:

Experiment 2: air-passengers

Description:

variable experiment
h 24
season_length 12
freq MS
level None
n_windows 1

Results:

metric timegpt-1 timegpt-1-long-horizon SeasonalNaive Naive
mae 58.1031 58.4587 71.25 115.25
mape 0.1257 0.1267 0.1552 0.2358
mse 4040.21 4110.79 5928.17 18859.2
total_time 0.4186 0.7749 0.0039 0.0035

Plot:

Experiment 3: electricity-multiple-series

Description:

variable experiment
h 24
season_length 24
freq H
level None
n_windows 1

Results:

metric timegpt-1 timegpt-1-long-horizon SeasonalNaive Naive
mae 178.293 268.13 269.23 1331.02
mape 0.0234 0.0311 0.0304 0.1692
mse 121589 219485 213677 4.68961e+06
total_time 0.5134 2.3232 0.0046 0.0041

Plot:

Experiment 4: electricity-multiple-series

Description:

variable experiment
h 168
season_length 24
freq H
level None
n_windows 1

Results:

metric timegpt-1 timegpt-1-long-horizon SeasonalNaive Naive
mae 465.496 346.972 398.956 1119.26
mape 0.062 0.0436 0.0512 0.1583
mse 835064 403760 656723 3.17316e+06
total_time 1.2921 0.5978 0.0048 0.0043

Plot:

Experiment 5: electricity-multiple-series

Description:

variable experiment
h 336
season_length 24
freq H
level None
n_windows 1

Results:

metric timegpt-1 timegpt-1-long-horizon SeasonalNaive Naive
mae 558.684 459.757 602.926 1340.95
mape 0.0697 0.0565 0.0787 0.17
mse 1.2272e+06 739114 1.61572e+06 6.04619e+06
total_time 0.7167 0.9303 0.0051 0.0045

Plot:

@jmoralez jmoralez marked this pull request as ready for review December 5, 2024 16:44
@jmoralez jmoralez requested a review from AzulGarza December 5, 2024 16:44
Copy link
Contributor

@AzulGarza AzulGarza left a comment

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

cool! lgtm

@jmoralez jmoralez merged commit 445a46c into main Dec 6, 2024
12 checks passed
@jmoralez jmoralez deleted the cv-refit branch December 6, 2024 19:47
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment

Labels

Projects

None yet

Development

Successfully merging this pull request may close these issues.

3 participants