Skip to content

Conversation

@jmoralez
Copy link
Contributor

@jmoralez jmoralez commented Apr 25, 2024

Since #298 changed the package name along with the documentation it's important to make a release under the new name (nixtla).

To test the new version I ran the action that uploads the packages to test pypi (logs), installed from there in colab:

%pip install httpx pandas "pydantic<2" requests tenacity utilsforecast>=0.1.7
%pip install --index-url=https://test.pypi.org/simple/ --no-deps nixtla==0.4.0 nixtlats==0.4.0

and verified that a sample notebook works as expected.

@github-actions
Copy link
Contributor

Experiment Results

Experiment 1: air-passengers

Description:

variable experiment
h 12
season_length 12
freq MS
level None
n_windows 1

Results:

metric timegpt-1 timegpt-1-long-horizon SeasonalNaive Naive
mae 12.6793 11.0623 47.8333 76
mape 0.027 0.0232 0.0999 0.1425
mse 213.935 199.132 2571.33 10604.2
total_time 10.6896 7.1431 0.0085 0.0047

Plot:

Experiment 2: air-passengers

Description:

variable experiment
h 24
season_length 12
freq MS
level None
n_windows 1

Results:

metric timegpt-1 timegpt-1-long-horizon SeasonalNaive Naive
mae 58.1031 58.4587 71.25 115.25
mape 0.1257 0.1267 0.1552 0.2358
mse 4040.21 4110.79 5928.17 18859.2
total_time 7.754 9.3175 0.0058 0.0049

Plot:

Experiment 3: electricity-multiple-series

Description:

variable experiment
h 24
season_length 24
freq H
level None
n_windows 1

Results:

metric timegpt-1 timegpt-1-long-horizon SeasonalNaive Naive
mae 142.394 196.363 269.23 1331.02
mape 0.0203 0.0234 0.0304 0.1692
mse 63464.7 123119 213677 4.68961e+06
total_time 11.0728 11.6808 0.0079 0.0069

Plot:

Experiment 4: electricity-multiple-series

Description:

variable experiment
h 168
season_length 24
freq H
level None
n_windows 1

Results:

metric timegpt-1 timegpt-1-long-horizon SeasonalNaive Naive
mae 522.427 353.528 398.956 1119.26
mape 0.069 0.0454 0.0512 0.1583
mse 966294 422332 656723 3.17316e+06
total_time 7.0779 8.7709 0.0076 0.0072

Plot:

Experiment 5: electricity-multiple-series

Description:

variable experiment
h 336
season_length 24
freq H
level None
n_windows 1

Results:

metric timegpt-1 timegpt-1-long-horizon SeasonalNaive Naive
mae 478.362 361.033 602.926 1340.95
mape 0.0622 0.046 0.0787 0.17
mse 805038 441118 1.61572e+06 6.04619e+06
total_time 15.9598 11.8142 0.0079 0.0069

Plot:

@jmoralez jmoralez marked this pull request as ready for review April 25, 2024 01:44
@jmoralez jmoralez requested a review from AzulGarza April 25, 2024 01:48
Copy link
Contributor

@AzulGarza AzulGarza left a comment

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

awesome @jmoralez! thanks for this.🔥

@jmoralez jmoralez merged commit 06cebcc into main Apr 25, 2024
@jmoralez jmoralez deleted the v0.4.0 branch April 25, 2024 02:00
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment

Labels

None yet

Projects

None yet

Development

Successfully merging this pull request may close these issues.

3 participants