Skip to content
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
Original file line number Diff line number Diff line change
Expand Up @@ -2994,9 +2994,9 @@ \subsubsection{Equipment Capacity}
\mathrm{GAHP Heating/Cooling Capacity} = \mathrm{Rated Capacity} \times \mathrm{CAPFT}
\end{equation}

The temperatures used for the equation model are the ambient air temperature ($T_{mathrm{amb}}$) and the returning (or entering) water temperature ($T_{\mathrm{ret}}$) of the load side.
The temperatures used for the equation model are the returning (or entering) water temperature ($T_{\mathrm{ret}}$) of the load side and the ambient air temperature ($T_{mathrm{amb}}$).
\begin{equation}
\mathrm{CAPFT} = a_1 \times T_{\mathrm{amb}} + b_1 \times T_{\mathrm{amb}}^{2} + c_1 \times T_{\mathrm{ret}} + d_1 \times T_{\mathrm{ret}}^{2} + e_1 \times T_{\mathrm{amb}} \times T_{\mathrm{ret}} + f_1
\mathrm{CAPFT} = a + b \times T_{\mathrm{ret}} + c \times T_{\mathrm{ret}}^{2} + d \times T_{\mathrm{amb}} + e \times T_{\mathrm{amb}}^{2} + f \times T_{\mathrm{amb}} \times T_{\mathrm{ret}}
\end{equation}

\subsubsection{Part Load Ratio}
Expand All @@ -3015,13 +3015,13 @@ \subsubsection{Fuel Use}
\subsubsection{EIR Temperature Adjustment}
A typical EIR temperature correction function will involve two independent temperature variables---the ambient air temperature ($T_{mathrm{amb}}$) and the returning (or entering) water temperature ($T_{\mathrm{ret}}$) of the load side.
\begin{equation}
\mathrm{EIRFT} = a_2 \times Tamb + b_2 \times T_{\mathrm{amb}}^{2} + c_2 \times T_{\mathrm{ret}}^{2} + d_2 \times T_{\mathrm{ret}}^{2} + e_2 \times T_{\mathrm{amb}} \times T_{\mathrm{ret}} + f_2
\mathrm{EIRFT} = a + b \times T_{\mathrm{ret}} + c \times T_{\mathrm{ret}}^{2} + d \times T_{\mathrm{amb}} + e \times T_{\mathrm{amb}}^{2} + f \times T_{\mathrm{amb}} \times T_{\mathrm{ret}}
\end{equation}

\subsubsection{EIR PLR Adjustment}
The EIR PLR correction function is a cubic function that takes the PLR as the sole independent variable. For example, a potential curve can be used is like the following:
\begin{equation}
\mathrm{EIRFPLR} = 0.0865 \times \mathrm{PLR}^{2} - 0.006 \times \mathrm{PLR} + 0.9814, \mathrm{for} 0.25 \leq \mathrm{PLR} \leq 1
\mathrm{EIRFPLR} = 0.0865 \times \mathrm{PLR}^{2} - 0.006 \times \mathrm{PLR} + 0.9814, \mathrm{for } 0.25 \leq \mathrm{PLR} \leq 1
\end{equation}

\subsubsection{Defrosting Adjustment (Heating mode only)}
Expand All @@ -3044,10 +3044,14 @@ \subsubsection{Cycling Ratio Adjustment}

Please note that since the object is based on curve inputs, the user also has the flexibility of defining the curves by themselves---e.g. from the capacity function of temperature to the defrost EIR corrections.

\subsubsection{Electricty Use}
\subsubsection{Electricity Use}

The electricity use for the fuel-fired absorption heat pump is modeled using EIR (Electricity based relation) input curves. The two part of electricity use is the ``auxiliary electricity'' and the ``standby electricity'':
\begin{equation}
\mathrm{Electricity use} = \mathrm{Norminal Auxiliary Power} \times \mathrm{EIR}_{\mathrm{auxiliary}} + \mathrm{Electricty}_{\mathrm{Standby}},
\mathrm{Electricity use} = \mathrm{Norminal Auxiliary Power} \times \mathrm{EIR}_{\mathrm{auxiliary}} + \mathrm{Electricity}_{\mathrm{Standby}},
\end{equation}
where $\mathrm{EIR}_{\mathrm{auxiliary}}$ are supplied by the curve input, and $\mathrm{Norminal Auxiliary Power}$ and $\mathrm{Electricty}_{\mathrm{Standby}}$ are supplied by the equipment standby electricity inputs.
Where $\mathrm{Norminal Auxiliary Power}$ and $\mathrm{Electricity}_{\mathrm{Standby}}$ are user inputs and where $\mathrm{EIR}_{\mathrm{auxiliary}}$ is a curve modifier defined as follows and involves two independent temperature variables---the ambient air temperature ($T_{mathrm{amb}}$) and the returning (or entering) water temperature ($T_{\mathrm{ret}}$) of the load side.

\begin{equation}
\mathrm{EIR}_{\mathrm{auxiliary}} = a + b \times T_{\mathrm{ret}} + c \times T_{\mathrm{ret}}^{2} + d \times T_{\mathrm{amb}} + e \times T_{\mathrm{amb}}^{2} + f \times T_{\mathrm{amb}} \times T_{\mathrm{ret}}
\end{equation}
44 changes: 42 additions & 2 deletions testfiles/PlantLoopHeatPump_Fuel-Fired.idf
Original file line number Diff line number Diff line change
Expand Up @@ -275,8 +275,8 @@ HeatPump:AirToWater:FuelFired:Heating,
NotModulated, !- Flow Mode
DryBulb, !- Outdoor Air Temperature Curve Input Variable
EnteringCondenser, !- Water Temperature Curve Input Variable
CapCurveFuncTemp, !- Normalized Capacity Function of Temperature Curve Name
EIRCurveFuncTemp, !- Fuel Energy Input Ratio Function of Temperature Curve Name
HeatingCapCurveFuncTemp, !- Normalized Capacity Function of Temperature Curve Name
HeatingEIRCurveFuncTemp, !- Fuel Energy Input Ratio Function of Temperature Curve Name
EIRCurveFuncPLR, !- Fuel Energy Input Ratio Function of PLR Curve Name
0.2, !- Minimum Part Load Ratio
1.0, !- Maximum Part Load Ratio
Expand Down Expand Up @@ -334,6 +334,24 @@ HeatPump:AirToWater:FuelFired:Heating,
-100, !- Minimum Value of x
100; !- Maximum Value of x

!- From Table 3 in "Pathways to Decarbonization of Residential Heating", Fridlyand et al. (2021)
Curve:Biquadratic,
HeatingCapCurveFuncTemp, !- Name
1.011452, !- Coefficient1 Constant
0.004093, !- Coefficient2 x
-0.00014, !- Coefficient3 x**2
0.00428, !- Coefficient4 y
-0.000086, !- Coefficient5 y**2
0.00000226, !- Coefficient6 x*y
-100, !- Minimum Value of x
100, !- Maximum Value of x
-30.0, !- Minimum Value of y
10.0, !- Maximum Value of y
, !- Minimum Curve Output
, !- Maximum Curve Output
Temperature, !- Input Unit Type for X
Temperature, !- Input Unit Type for Y
Dimensionless; !- Output Unit Type

Curve:Biquadratic,
CapCurveFuncTemp, !- Name
Expand All @@ -353,6 +371,28 @@ HeatPump:AirToWater:FuelFired:Heating,
Temperature, !- Input Unit Type for Y
Dimensionless; !- Output Unit Type

!- Adapted from Table 3 in "Pathways to Decarbonization of Residential Heating", Fridlyand et al. (2021)
!- The curve from Table 3 output an adjusted EIR and not an EIR modifier
!- The curve from Table 3 has been renormalized at the ANSI rating conditions of 95°F return and 47°F ambient to represent an EIR modifier

Curve:Biquadratic,
HeatingEIRCurveFuncTemp, !- Name
0.559888009625229, !- Coefficient1 Constant
0.0171957698511524, !- Coefficient2 x
-0.0000891729967627554, !- Coefficient3 x**2
-0.00464869065091091, !- Coefficient4 y
0.00009648225879249, !- Coefficient5 y**2
-0.0000701689154854473, !- Coefficient6 x*y
-100, !- Minimum Value of x
100, !- Maximum Value of x
-30.0, !- Minimum Value of y
10.0, !- Maximum Value of y
, !- Minimum Curve Output
, !- Maximum Curve Output
Temperature, !- Input Unit Type for X
Temperature, !- Input Unit Type for Y
Dimensionless; !- Output Unit Type

Curve:Biquadratic,
EIRCurveFuncTemp, !- Name
1.0, !- Coefficient1 Constant
Expand Down
Loading