@@ -445,23 +445,23 @@ public fun <T> DataFrame<T>.pivot(vararg columns: KProperty<*>, inward: Boolean?
445445// region pivotMatches
446446
447447/* *
448- * * Cell values are [Boolean] indicators showing whether matching rows exist
449- * for each pivoting/grouping key combination.
448+ * Computes a **presence matrix** (similar to one-hot encoding) for the values in the
449+ * specified [\columns] of this [DataFrame], returning a new [DataFrame] where:
450450 */
451451@ExcludeFromSources
452- internal interface PivotMatchesResultDescription
452+ internal interface PivotMatchesCommonDescription
453453
454454/* *
455- * Computes whether matching rows exist in this [DataFrame] for all unique values of the
456- * selected [\columns] across all possible combinations
457- * of values in the remaining columns (all expecting selected).
458- *
459- * Performs a [pivot] operation on the specified [\columns] of this [DataFrame],
460- * then [groups it by][Pivot.groupByOther] the remaining columns,
461- * and produces a new [Boolean] matrix (in the form of a [DataFrame]).
462- *
463- * @include [PivotGroupByDocs.ResultingMatrixCommonDescription]
464- * @include [PivotMatchesResultDescription ]
455+ * * **Cells** contain a [Boolean] value indicating whether a row with the corresponding
456+ * combination of values (horizontal and vertical) exists in the [DataFrame].
457+ */
458+ @ExcludeFromSources
459+ internal interface PivotMatchesResultCellDescription
460+
461+ /* *
462+ * {@include [PivotMatchesCommonDescription]}
463+ * @include [PivotGroupByDocs.ResultingMatrixShortcutDescription] {@set [PivotGroupByDocs.GroupingColumns] remaining}
464+ * @include [PivotMatchesResultCellDescription ]
465465 *
466466 * This function combines [pivot][DataFrame.pivot], [groupByOther][Pivot.groupByOther],
467467 * and [matches][PivotGroupBy.matches] operations into a single call.
@@ -538,23 +538,23 @@ public fun <T> DataFrame<T>.pivotMatches(vararg columns: KProperty<*>, inward: B
538538// region pivotCounts
539539
540540/* *
541- * * Cell values represent the number of matching rows
542- * for each pivoting/grouping key combination.
541+ * Computes a **count matrix** (similar to frequency encoding) for the values in the
542+ * specified [\columns] of this [DataFrame], returning a new [DataFrame] where:
543543 */
544544@ExcludeFromSources
545- internal interface PivotCountsResultDescription
545+ internal interface PivotCountsCommonDescription
546546
547547/* *
548- * Computes number of matching rows in this [DataFrame] for all unique values of the
549- * selected [\columns] (independently) across all possible combinations
550- * of values in the remaining columns (all expecting selected).
551- *
552- * Performs a [pivot] operation on the specified [\columns] of this [DataFrame],
553- * then [groups it by][Pivot.groupByOther] the remaining columns,
554- * and produces a new count matrix (in the form of a [DataFrame]).
555- *
556- * @include [PivotGroupByDocs.ResultingMatrixCommonDescription]
557- * @include [PivotCountsResultDescription ]
548+ * * **Cells** contain a [Int] value indicating number a row with the corresponding
549+ * combination of values (horizontal and vertical) exists in the [DataFrame].
550+ */
551+ @ExcludeFromSources
552+ internal interface PivotCountsResultCellDescription
553+
554+ /* *
555+ * {@include [PivotCountsCommonDescription]}
556+ * @include [PivotGroupByDocs.ResultingMatrixShortcutDescription] {@set [PivotGroupByDocs.GroupingColumns] remaining}
557+ * @include [PivotCountsResultCellDescription ]
558558 *
559559 * This function combines [pivot][DataFrame.pivot], [groupByOther][Pivot.groupByOther],
560560 * and [count][PivotGroupBy.count] operations into a single call.
@@ -686,14 +686,10 @@ public fun <G> GroupBy<*, G>.pivot(vararg columns: KProperty<*>, inward: Boolean
686686// region pivotMatches
687687
688688/* *
689- * Computes whether matching rows exist in groups of this [GroupBy] for all unique values of the
690- * selected columns (independently) across all [groupBy] key combinations.
691- *
692- * Performs a [pivot][GroupBy.pivot] operation on the specified [\columns] of this [GroupBy] groups,
693- * and produces a new matrix-like [DataFrame].
694- *
695- * @include [PivotGroupByDocs.ResultingMatrixCommonDescription]
696- * @include [PivotMatchesResultDescription]
689+ * Computes a **presence matrix** (similar to one-hot encoding) for the values in the
690+ * specified [\columns] within each group of this [GroupBy], returning a new [DataFrame] where:
691+ * @include [PivotGroupByDocs.ResultingMatrixShortcutDescription]
692+ * @include [PivotMatchesResultCellDescription]
697693 *
698694 * This function combines [pivot][GroupBy.pivot]
699695 * and [matches][PivotGroupBy.matches] operations into a single call.
@@ -764,14 +760,10 @@ public fun <G> GroupBy<*, G>.pivotMatches(vararg columns: KProperty<*>, inward:
764760// region pivotCounts
765761
766762/* *
767- * Computes number of matching rows in groups of this [GroupBy] for all unique values of the
768- * selected [\columns] (independently) across all [groupBy] key combinations.
769- *
770- * Performs a [pivot] operation on the specified [\columns] of this [DataFrame]
771- * and produces a new matrix-like [DataFrame].
772- *
773- * @include [PivotGroupByDocs.ResultingMatrixCommonDescription]
774- * @include [PivotCountsResultDescription]
763+ * Computes a **count matrix** (similar to frequency encoding) for the values in the
764+ * specified [\columns] within each group of this [GroupBy], returning a new [DataFrame] where:
765+ * @include [PivotGroupByDocs.ResultingMatrixShortcutDescription]
766+ * @include [PivotCountsResultCellDescription]
775767 *
776768 * This function combines [pivot][GroupBy.pivot]
777769 * and [count][PivotGroupBy.count] operations into a single call.
@@ -1202,14 +1194,19 @@ internal inline fun <T> Pivot<T>.delegate(crossinline body: PivotGroupBy<T>.() -
12021194 */
12031195internal interface PivotGroupByDocs {
12041196
1197+ interface GroupingColumns
1198+
12051199 /* *
1206- * In the resulting [DataFrame]:
1207- * * Pivoted columns are displayed vertically — as [column groups][ColumnGroup] for each pivoted column,
1208- * with subcolumns corresponding to their unique values;
1209- * * Grouping key columns are displayed horizontally — as columns representing
1210- * unique combinations of grouping key values;
1200+ * * **Columns** represent all unique values from the selected [\columns]
1201+ * (they become [column groups][ColumnGroup]
1202+ * corresponding to value combinations when using [then][PivotDsl.then],
1203+ * similar to [pivot]);
1204+ * * **Rows** correspond to all unique combinations of values from the {@get [GroupingColumns] grouping} columns;
1205+ * each combination is represented in dedicated key columns that store
1206+ * a distinct set of values for each row
1207+ * (similar to [keys][GroupBy.keys] in [GroupBy]).
12111208 */
1212- interface ResultingMatrixCommonDescription
1209+ interface ResultingMatrixShortcutDescription
12131210
12141211 /* *
12151212 * [PivotGroupBy] is a dataframe-like structure that combines [Pivot] and [GroupBy],
0 commit comments