@@ -68,14 +68,14 @@ internal interface PivotDocs {
6868 *
6969 * ### Create [Pivot]
7070 *
71- * [**`pivot`**][pivot]**`(`**`inward: `[`Boolean`][Boolean]**` = true) { `**`pivotColumns: `[`PivotColumnsSelector`][PivotColumnsSelector]**` }`**
71+ * [**`pivot`**][pivot]**`(`**`inward: `[`Boolean`][Boolean]**` = true) { `**`pivotColumns: `[`PivotColumnsSelector`][PivotColumnsSelector]**` }`**
7272 *
7373 * ### Reduce [Pivot] into [DataRow]
7474 *
75- * [Pivot][Pivot]`.`[**`minBy`**][Pivot.minBy]**` { `**`column: `[`RowExpression`][RowExpression]**` }`**
75+ * [Pivot][Pivot]`.`[**`minBy`**][Pivot.minBy]**` { `**`column: `[`RowExpression`][RowExpression]**` }`**
7676 *
7777 * {@include [Indent]}
78- * `| `__`.`__[**`maxBy`**][Pivot.maxBy]**` { `**`column: `[`RowExpression`][RowExpression]**` }`**
78+ * `| `__`.`__[**`maxBy`**][Pivot.maxBy]**` { `**`column: `[`RowExpression`][RowExpression]**` }`**
7979 *
8080 * {@include [Indent]}
8181 * `| `__`.`__[**`first`**][Pivot.first]` \[ `**` { `**`rowCondition: `[`RowFilter`][RowFilter]**` } `**`]`
@@ -84,23 +84,23 @@ internal interface PivotDocs {
8484 * `| `__`.`__[**`last`**][Pivot.last]` \[ `**`{ `**`rowCondition: `[`RowFilter`][RowFilter]**` } `**`]`
8585 *
8686 * {@include [Indent]}
87- * `| `__`.`__[**`medianBy`**][Pivot.medianBy]**` { `**`column: `[`RowExpression`][RowExpression]**` }`**
87+ * `| `__`.`__[**`medianBy`**][Pivot.medianBy]**` { `**`column: `[`RowExpression`][RowExpression]**` }`**
8888 *
8989 * {@include [Indent]}
90- * `| `__`.`__[**`percentileBy`**][Pivot.percentileBy]**`(`**`percentile: `[`Double`][Double]**`) { `**`column: `[`RowExpression`][RowExpression]**` }`**
90+ * `| `__`.`__[**`percentileBy`**][Pivot.percentileBy]**`(`**`percentile: `[`Double`][Double]**`) { `**`column: `[`RowExpression`][RowExpression]**` }`**
9191 *
9292 * {@include [Indent]}
93- * __`.`__[**`with`**][Pivot.with]**` { `**`rowExpression: `[`RowExpression`][RowExpression]**` }`**
93+ * __`.`__[**`with`**][Pivot.with]**` { `**`rowExpression: `[`RowExpression`][RowExpression]**` }`**
9494 *
9595 * {@include [Indent]}
9696 * `| `__`.`__[**`values`**][Pivot.values]**` { `**`valueColumns: `[`ColumnsSelector`][ColumnsSelector]**` }`**
9797 *
9898 * ### Aggregate [Pivot] into [DataRow]
9999 *
100- * [Pivot][Pivot]`.`[**`count`**][Pivot.count]**`() `**
100+ * [Pivot][Pivot]`.`[**`count`**][Pivot.count]**`()`**
101101 *
102102 * {@include [Indent]}
103- * `| `__`.`__[**`frames`**][Pivot.frames]**`() `**
103+ * `| `__`.`__[**`frames`**][Pivot.frames]**`()`**
104104 *
105105 * {@include [Indent]}
106106 * `| `__`.`__[**`with`**][Pivot.with]**` { `**`rowExpression: `[`RowExpression`][RowExpression]**` }`**
@@ -122,7 +122,7 @@ internal interface PivotDocs {
122122 * `| `__`.`__[**`groupByOther`**][Pivot.groupByOther]**`()`**
123123 *
124124 * {@include [Indent]}
125- * ` \[ `__`.`__[**`default`**][PivotGroupBy.default]**`(`**`defaultValue`**`) `**`]`
125+ * `\[ `__`.`__[**`default`**][PivotGroupBy.default]**`(`**`defaultValue`**`) `**`]`
126126 *
127127 * {@include [Indent]}
128128 * `| `__`.`__[<pivot_groupBy_reducer>][PivotGroupByDocs.Reducing]
@@ -164,6 +164,8 @@ internal interface PivotDocs {
164164 * (or as [column groups][ColumnGroup]) and values composed of the reduced results from each group.
165165 *
166166 * Check out [`Pivot grammar`][Grammar].
167+ *
168+ * For more information: {@include [DocumentationUrls.PivotReducing]}
167169 */
168170 interface Reducing
169171
@@ -193,13 +195,15 @@ internal interface PivotDocs {
193195 * (or as [column groups][ColumnGroup]) and values representing the aggregated results of each group.
194196 *
195197 * Check out [`Pivot grammar`][Grammar].
198+ *
199+ * For more information: {@include [DocumentationUrls.PivotAggregation]}
196200 */
197201 interface Aggregation
198202
199203 /* *
200204 * ### [Pivot] grouping
201205 *
202- * [Pivot] can be pivoted with [groupBy][Pivot.groupBy] method. It will produce a [PivotGroupBy].
206+ * [Pivot] can be grouped with [groupBy][Pivot.groupBy] method. It will produce a [PivotGroupBy].
203207 *
204208 * @include [PivotGroupByDocs.CommonDescription]
205209 */
@@ -242,7 +246,9 @@ internal interface PivotDocs {
242246 interface AggregationStatistics
243247
244248 /* *
245- * Pivoted columns can also be created inline:
249+ * Pivoted columns can also be created inline
250+ * (i.g. by creating a new column using [expr] or simply renaming the old one
251+ * using [named]) :
246252 * ```kotlin
247253 * // Create a new column "newName" based on existing "oldName" values
248254 * // and pivot it:
@@ -442,16 +448,17 @@ public fun <T> DataFrame<T>.pivot(vararg columns: KProperty<*>, inward: Boolean?
442448 * * Cell values are [Boolean] indicators showing whether matching rows exist
443449 * for each pivoting/grouping key combination.
444450 */
451+ @ExcludeFromSources
445452internal interface PivotMatchesResultDescription
446453
447454/* *
448455 * Computes whether matching rows exist in this [DataFrame] for all unique values of the
449- * selected [\columns] (independently) across all possible combinations
456+ * selected [\columns] across all possible combinations
450457 * of values in the remaining columns (all expecting selected).
451458 *
452459 * Performs a [pivot] operation on the specified [\columns] of this [DataFrame],
453460 * then [groups it by][Pivot.groupByOther] the remaining columns,
454- * and produces a new matrix-like [DataFrame].
461+ * and produces a new [Boolean] matrix (in the form of a [DataFrame]) .
455462 *
456463 * @include [PivotGroupByDocs.ResultingMatrixCommonDescription]
457464 * @include [PivotMatchesResultDescription]
@@ -467,10 +474,12 @@ internal interface PivotMatchesResultDescription
467474 *
468475 * See also:
469476 * * [pivotCounts], which performs a similar operation
470- * but counts the number of matching rows instead of checking for their presence.
477+ * but counts the number of matching rows instead of checking for their presence
478+ * to produce a count matrix.
471479 *
472480 * ### This `pivotMatches` Overload
473481 */
482+ @ExcludeFromSources
474483internal interface DataFramePivotMatchesCommonDocs
475484
476485/* *
@@ -488,7 +497,7 @@ internal interface DataFramePivotMatchesCommonDocs
488497 * @param [inward] If `true` (default), the generated pivoted columns are nested inside the original column;
489498 * if `false`, they are placed at the top level.
490499 * @param [columns] The [Columns Selector][ColumnsSelector] that defines which columns are used as [pivot] keys for the operation.
491- * @return A new [DataFrame] representing a Boolean presence matrix — with grouping key columns as rows,
500+ * @return A new [DataFrame] representing a [ Boolean] presence matrix — with grouping key columns as rows,
492501 * pivot key values as columns, and `true`/`false` cells indicating existing combinations.
493502 */
494503public fun <T > DataFrame<T>.pivotMatches (inward : Boolean = true, columns : ColumnsSelector <T , * >): DataFrame <T > =
@@ -532,6 +541,7 @@ public fun <T> DataFrame<T>.pivotMatches(vararg columns: KProperty<*>, inward: B
532541 * * Cell values represent the number of matching rows
533542 * for each pivoting/grouping key combination.
534543 */
544+ @ExcludeFromSources
535545internal interface PivotCountsResultDescription
536546
537547/* *
@@ -541,7 +551,7 @@ internal interface PivotCountsResultDescription
541551 *
542552 * Performs a [pivot] operation on the specified [\columns] of this [DataFrame],
543553 * then [groups it by][Pivot.groupByOther] the remaining columns,
544- * and produces a new matrix-like [DataFrame].
554+ * and produces a new count matrix (in the form of a [DataFrame]) .
545555 *
546556 * @include [PivotGroupByDocs.ResultingMatrixCommonDescription]
547557 * @include [PivotCountsResultDescription]
@@ -556,7 +566,8 @@ internal interface PivotCountsResultDescription
556566 * For more information: {@include [DocumentationUrls.PivotCounts]}
557567 *
558568 * See also: [pivotMatches], which performs a similar operation
559- * but check if there is any matching row instead of counting then.
569+ * but check if there is any matching row instead of counting then
570+ * to produce a [Boolean] matrix.
560571 *
561572 * ### This `pivotCounts` Overload
562573 */
@@ -1143,7 +1154,7 @@ public interface Pivot<T> : Aggregatable<T>
11431154/* *
11441155 * A specialized [ColumnsSelector] used for selecting columns in a [pivot] operation.
11451156 *
1146- * Provides a [PivotDsl] both as the receiver and the lambda parameter, and expects
1157+ * Provides [PivotDsl] both as the receiver and the lambda parameter, and expects
11471158 * a [ColumnsResolver] as the return value.
11481159 *
11491160 * Enables defining the hierarchy of pivot columns using [then][PivotDsl.then].
@@ -1201,10 +1212,11 @@ internal interface PivotGroupByDocs {
12011212 interface ResultingMatrixCommonDescription
12021213
12031214 /* *
1204- * [PivotGroupBy] is a dataframe-like structure, combining [Pivot] and [GroupBy]
1205- * and representing a matrix table with vertical [Pivot] groups (as columns)
1206- * and horizontal [GroupBy] groups (as rows), and each cell
1207- * represents a group corresponding both to [GroupBy] and [Pivot] key.
1215+ * [PivotGroupBy] is a dataframe-like structure that combines [Pivot] and [GroupBy],
1216+ * representing a matrix table with vertical [Pivot] groups (as columns)
1217+ * and horizontal [GroupBy] groups (as rows),
1218+ * where each cell represents a group corresponding
1219+ * to both the [GroupBy] and [Pivot] key.
12081220 *
12091221 * Reversed order of `pivot` and `groupBy`
12101222 * (i.e., [DataFrame.pivot] + [Pivot.groupBy] or [DataFrame.groupBy] + [GroupBy.pivot])
0 commit comments