Skip to content
Open
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
2 changes: 1 addition & 1 deletion theories/Algebra/Groups/FreeGroup.v
Original file line number Diff line number Diff line change
Expand Up @@ -241,7 +241,7 @@ Section Reduction.
(** Finally we have defined the free group on [A] *)
Definition FreeGroup : Group.
Proof.
snapply (Build_Group freegroup_type); repeat split; exact _.
srapply (Build_Group freegroup_type sgop_freegroup); repeat split; exact _.
Defined.

Definition word_rec (G : Group) (s : A -> G) : A + A -> G.
Expand Down
2 changes: 1 addition & 1 deletion theories/Algebra/Groups/FreeProduct.v
Original file line number Diff line number Diff line change
Expand Up @@ -524,7 +524,7 @@ Section AmalgamatedFreeProduct.

Definition AmalgamatedFreeProduct : Group.
Proof.
snapply (Build_Group amal_type); repeat split; exact _.
snapply (Build_Group amal_type sgop_amal_type); repeat split; exact _.
Defined.

End AmalgamatedFreeProduct.
Expand Down
15 changes: 8 additions & 7 deletions theories/Algebra/Groups/Group.v
Original file line number Diff line number Diff line change
Expand Up @@ -969,17 +969,18 @@ Definition grp_prod : Group -> Group -> Group.
Proof.
intros G H.
snapply (Build_Group (G * H)).
4: repeat split.
- intros [g1 h1] [g2 h2].
exact (g1 * g2, h1 * h2).
- exact (1, 1).
- exact (functor_prod inv inv).
- exact _.
- intros x y z; apply path_prod'; apply simple_associativity.
- intros x; apply path_prod'; apply left_identity.
- intros x; apply path_prod'; apply right_identity.
- intros x; apply path_prod'; apply left_inverse.
- intros x; apply path_prod'; apply right_inverse.
- split.
+ repeat split.
* exact _.
* intros x y z; apply path_prod'; apply simple_associativity.
* intros x; apply path_prod'; apply left_identity.
* intros x; apply path_prod'; apply right_identity.
+ intros x; apply path_prod'; apply left_inverse.
+ intros x; apply path_prod'; apply right_inverse.
Defined.

(** Maps into the direct product can be built by mapping separately into each factor. *)
Expand Down
59 changes: 30 additions & 29 deletions theories/Homotopy/HomotopyGroup.v
Original file line number Diff line number Diff line change
Expand Up @@ -46,8 +46,7 @@ Instance is1functor_homotopygroup_type_ptype (n : nat)
definitionally equal to [Pi 1 (iterated_loops n X)] *)
Definition Pi1 (X : pType) : Group.
Proof.
srapply (Build_Group (Tr 0 (loops X)));
repeat split.
srapply (Build_Group (Tr 0 (loops X))).
(** Operation *)
- intros x y.
strip_truncations.
Expand All @@ -57,33 +56,35 @@ Proof.
(** Inverse *)
- srapply Trunc_rec; intro x.
exact (tr x^).
(** [IsHSet] *)
- exact _.
(** Associativity *)
- intros x y z.
strip_truncations.
cbn; apply ap.
apply concat_p_pp.
(** Left identity *)
- intro x.
strip_truncations.
cbn; apply ap.
apply concat_1p.
(** Right identity *)
- intro x.
strip_truncations.
cbn; apply ap.
apply concat_p1.
(** Left inverse *)
- intro x.
strip_truncations.
apply (ap tr).
apply concat_Vp.
(** Right inverse *)
- intro x.
strip_truncations.
apply (ap tr).
apply concat_pV.
- split.
+ repeat split.
(** [IsHSet] *)
* exact _.
(** Associativity *)
* intros x y z.
strip_truncations.
cbn; apply ap.
apply concat_p_pp.
(** Left identity *)
* intro x.
strip_truncations.
cbn; apply ap.
apply concat_1p.
(** Right identity *)
* intro x.
strip_truncations.
cbn; apply ap.
apply concat_p1.
(** Left inverse *)
+ intro x.
strip_truncations.
apply (ap tr).
apply concat_Vp.
(** Right inverse *)
+ intro x.
strip_truncations.
apply (ap tr).
apply concat_pV.
Defined.

(** Definition of the nth homotopy group *)
Expand Down
Loading