Skip to content
Merged
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
Original file line number Diff line number Diff line change
@@ -1,9 +1,10 @@
import os
from pathlib import Path

import pytest
import pandas as pd
import pytest
from pandas.api.types import union_categoricals
from sklearn.model_selection import train_test_split

from giskard import Dataset, Model
from tests.url_utils import fetch_from_ftp
Expand Down Expand Up @@ -135,25 +136,36 @@ def preprocess_dataset(train_set, test_set):
# Remove useless columns.
united.drop("TransactionDT", axis=1, inplace=True)

return united
# Split in train/test sets
train_set, test_set = train_test_split(united, test_size=0.5, random_state=41)

return train_set, test_set


@pytest.fixture()
def fraud_detection_data() -> Dataset:
# Download dataset.
raw_data = preprocess_dataset(*read_dataset())
_, test_set = preprocess_dataset(*read_dataset())
wrapped_dataset = Dataset(
test_set, name="fraud_detection_adversarial_dataset", target=TARGET_COLUMN, cat_columns=CATEGORICALS
)
return wrapped_dataset


@pytest.fixture()
def fraud_detection_train_data() -> Dataset:
train_set, _ = preprocess_dataset(*read_dataset())
wrapped_dataset = Dataset(
raw_data, name="fraud_detection_adversarial_dataset", target=TARGET_COLUMN, cat_columns=CATEGORICALS
train_set, name="fraud_detection_adversarial_dataset", target=TARGET_COLUMN, cat_columns=CATEGORICALS
)
return wrapped_dataset


@pytest.fixture()
def fraud_detection_model(fraud_detection_data: Dataset) -> Model:
def fraud_detection_model(fraud_detection_train_data: Dataset) -> Model:
from lightgbm import LGBMClassifier

x = fraud_detection_data.df.drop(TARGET_COLUMN, axis=1)
y = fraud_detection_data.df[TARGET_COLUMN]
x = fraud_detection_train_data.df.drop(TARGET_COLUMN, axis=1)
y = fraud_detection_train_data.df[TARGET_COLUMN]

estimator = LGBMClassifier()
estimator.fit(x, y)
Expand Down