Skip to content
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension


Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
1 change: 1 addition & 0 deletions .github/workflows/Integration.yml
Original file line number Diff line number Diff line change
Expand Up @@ -48,6 +48,7 @@ jobs:
- Bijectors
- DifferentiationInterface
- DynamicExpressions
- Lux
steps:
- uses: actions/checkout@v5
- uses: julia-actions/setup-julia@v2
Expand Down
22 changes: 22 additions & 0 deletions test/integration/Lux/Project.toml
Original file line number Diff line number Diff line change
@@ -0,0 +1,22 @@
[deps]
ComponentArrays = "b0b7db55-cfe3-40fc-9ded-d10e2dbeff66"
Enzyme = "7da242da-08ed-463a-9acd-ee780be4f1d9"
EnzymeCore = "f151be2c-9106-41f4-ab19-57ee4f262869"
Lux = "b2108857-7c20-44ae-9111-449ecde12c47"
LuxTestUtils = "ac9de150-d08f-4546-94fb-7472b5760531"
NNlib = "872c559c-99b0-510c-b3b7-b6c96a88d5cd"
StableRNGs = "860ef19b-820b-49d6-a774-d7a799459cd3"
Test = "8dfed614-e22c-5e08-85e1-65c5234f0b40"
Zygote = "e88e6eb3-aa80-5325-afca-941959d7151f"

[sources]
Enzyme = {path = "../../.."}
EnzymeCore = {path = "../../../lib/EnzymeCore"}

[compat]
ComponentArrays = "0.15.29"
Lux = "1.21"
LuxTestUtils = "2.0.1"
NNlib = "0.9.31"
StableRNGs = "1"
Zygote = "0.7.10"
130 changes: 130 additions & 0 deletions test/integration/Lux/runtests.jl
Original file line number Diff line number Diff line change
@@ -0,0 +1,130 @@
using Enzyme, Lux, Zygote, Test, NNlib, StableRNGs, ComponentArrays
using LuxTestUtils: check_approx

generic_loss_function(model, x, ps, st) = sum(abs2, first(model(x, ps, st)))

function compute_enzyme_gradient(model, x, ps, st)
return Enzyme.gradient(
Enzyme.set_runtime_activity(Reverse),
generic_loss_function,
Const(model),
x,
ps,
Const(st),
)[2:3]
end

function compute_zygote_gradient(model, x, ps, st)
_, dx, dps, _ = Zygote.gradient(generic_loss_function, model, x, ps, st)
return dx, dps
end

function test_enzyme_gradients(model, x, ps, st)
dx, dps = compute_enzyme_gradient(model, x, ps, st)
dx_zygote, dps_zygote = compute_zygote_gradient(model, x, ps, st)
@test check_approx(dx, dx_zygote; atol = 1.0f-3, rtol = 1.0f-3)
return @test check_approx(dps, dps_zygote; atol = 1.0f-3, rtol = 1.0f-3)
end

const MODELS_LIST = Any[
(Dense(2, 4), randn(StableRNG(0), Float32, 2, 3)),
(Dense(2, 4, gelu), randn(StableRNG(0), Float32, 2, 3)),
(Dense(2, 4, gelu; use_bias = false), randn(StableRNG(0), Float32, 2, 3)),
(Chain(Dense(2, 4, relu), Dense(4, 3)), randn(StableRNG(0), Float32, 2, 3)),
(Scale(2), randn(StableRNG(0), Float32, 2, 3)),
(Conv((3, 3), 2 => 3), randn(StableRNG(0), Float32, 3, 3, 2, 2)),
(Conv((3, 3), 2 => 3, gelu; pad = SamePad()), randn(StableRNG(0), Float32, 3, 3, 2, 2)),
(
Conv((3, 3), 2 => 3, relu; use_bias = false, pad = SamePad()),
randn(StableRNG(0), Float32, 3, 3, 2, 2),
),
(
Chain(Conv((3, 3), 2 => 3, gelu), Conv((3, 3), 3 => 1, gelu)),
rand(StableRNG(0), Float32, 5, 5, 2, 2),
),
(
Chain(Conv((4, 4), 2 => 2; pad = SamePad()), MeanPool((5, 5); pad = SamePad())),
rand(StableRNG(0), Float32, 5, 5, 2, 2),
),
(
Chain(Conv((3, 3), 2 => 3, relu; pad = SamePad()), MaxPool((2, 2))),
rand(StableRNG(0), Float32, 5, 5, 2, 2),
),
(Maxout(() -> Dense(5 => 4, tanh), 3), randn(StableRNG(0), Float32, 5, 2)),
(Bilinear((2, 2) => 3), randn(StableRNG(0), Float32, 2, 3)),
(SkipConnection(Dense(2 => 2), vcat), randn(StableRNG(0), Float32, 2, 3)),
(ConvTranspose((3, 3), 3 => 2; stride = 2), rand(StableRNG(0), Float32, 5, 5, 3, 1)),
(StatefulRecurrentCell(RNNCell(3 => 5)), rand(StableRNG(0), Float32, 3, 2)),
(StatefulRecurrentCell(RNNCell(3 => 5, gelu)), rand(StableRNG(0), Float32, 3, 2)),
(
StatefulRecurrentCell(RNNCell(3 => 5, gelu; use_bias = false)),
rand(StableRNG(0), Float32, 3, 2),
),
(
Chain(
StatefulRecurrentCell(RNNCell(3 => 5)), StatefulRecurrentCell(RNNCell(5 => 3))
),
rand(StableRNG(0), Float32, 3, 2),
),
(StatefulRecurrentCell(LSTMCell(3 => 5)), rand(StableRNG(0), Float32, 3, 2)),
(
Chain(
StatefulRecurrentCell(LSTMCell(3 => 5)), StatefulRecurrentCell(LSTMCell(5 => 3))
),
rand(StableRNG(0), Float32, 3, 2),
),
(StatefulRecurrentCell(GRUCell(3 => 5)), rand(StableRNG(0), Float32, 3, 10)),
(
Chain(
StatefulRecurrentCell(GRUCell(3 => 5)), StatefulRecurrentCell(GRUCell(5 => 3))
),
rand(StableRNG(0), Float32, 3, 10),
),
(Chain(Dense(2, 4), GroupNorm(4, 2, gelu)), randn(StableRNG(0), Float32, 2, 3)),
(Chain(Dense(2, 4), GroupNorm(4, 2)), randn(StableRNG(0), Float32, 2, 3)),
(
Chain(Conv((3, 3), 2 => 6), GroupNorm(6, 3)),
randn(StableRNG(0), Float32, 6, 6, 2, 2),
),
(
Chain(Conv((3, 3), 2 => 6, tanh), GroupNorm(6, 3)),
randn(StableRNG(0), Float32, 6, 6, 2, 2),
),
(
Chain(Conv((3, 3), 2 => 3, gelu), LayerNorm((1, 1, 3))),
randn(StableRNG(0), Float32, 4, 4, 2, 2),
),
(
Chain(Conv((3, 3), 2 => 6), InstanceNorm(6)),
randn(StableRNG(0), Float32, 6, 6, 2, 2),
),
(
Chain(Conv((3, 3), 2 => 6, tanh), InstanceNorm(6)),
randn(StableRNG(0), Float32, 6, 6, 2, 2),
),
(Chain(Dense(2, 4), BatchNorm(4)), randn(StableRNG(0), Float32, 2, 3)),
(Chain(Dense(2, 4), BatchNorm(4, gelu)), randn(StableRNG(0), Float32, 2, 3)),
(
Chain(Dense(2, 4), BatchNorm(4, gelu; track_stats = false)),
randn(StableRNG(0), Float32, 2, 3),
),
(Chain(Conv((3, 3), 2 => 6), BatchNorm(6)), randn(StableRNG(0), Float32, 6, 6, 2, 2)),
(
Chain(Conv((3, 3), 2 => 6, tanh), BatchNorm(6)),
randn(StableRNG(0), Float32, 6, 6, 2, 2),
),
]

@testset "Enzyme Integration" begin
@testset "[$(i)] $(nameof(typeof(model)))" for (i, (model, x)) in enumerate(MODELS_LIST)
ps, st = Lux.setup(StableRNG(12345), model)
test_enzyme_gradients(model, x, ps, st)
end
end

@testset "Enzyme Integration ComponentArray" begin
@testset "[$(i)] $(nameof(typeof(model)))" for (i, (model, x)) in enumerate(MODELS_LIST)
ps, st = Lux.setup(StableRNG(12345), model)
test_enzyme_gradients(model, x, ComponentArray(ps), st)
end
end
Loading