Skip to content

Issue with custom benchmarks from Avalanche datasets #1612

@sudaksh14

Description

@sudaksh14

Hi,
I am facing this issue where I have my own datasets for time series (UEA dataset) and I am trying to create a custom benchmark from this dataset with 3 experiences in train set and a single test set. The code is below:

data = dta.loadDict("UEA_data", path=datapath)
name_list = ['ArticularyWordRecognition_TEST', 'ArticularyWordRecognition_TRAIN']

for key,value in data.items():
    if key in name_list:
        if "_TRAIN" in key:
            print("Dataset Name: ", key)
            print(type(value))
            value = dta.pamosConverter(df=value, normalizelength=1)
            split_df = np.array_split(value, 3)
            split_df = [part.reset_index(drop=True) for part in split_df]

            train_list_Y = []
            train_list_X = []
            for df in split_df:
                train_tensor_Y = torch.tensor(df["label"].values)
                train_list_Y.append(train_tensor_Y)
            
            for df in split_df:
                train_tensor_X = df.drop("label", axis=1)
                train_tensor_X = dta.PAMOS_to_array(df=train_tensor_X)
                print(type(train_tensor_X), train_tensor_X.shape)
 
                train_tensor_X = torch.from_numpy(train_tensor_X)
                train_list_X.append(train_tensor_X)
        
            print("Data Type: ", type(train_list_X[0]))
            print("Data Shape: ", train_list_X[0].shape)
            print("Data Type: ", type(train_list_Y[0]))
            print("Data Shape: ", train_list_Y[0].shape)

            train_data = [TensorDataset(train_list_X[i], train_list_Y[i]) for i in range(3)]
            avl_data_train = [AvalancheDataset(train_data[i]) for i in range(3)]

        else:
            print("Dataset Name: ", key)
            print(type(value))
            value = dta.pamosConverter(df=value, normalizelength=1)
            test_tensor_Y = torch.tensor(value["label"].values)

            value = value.drop("label", axis=1)
            value = dta.PAMOS_to_array(df=value)

            test_tensor_X = torch.from_numpy(value)
        
            print("Data Type: ", type(test_tensor_X))
            print("Data Shape: ", test_tensor_X.shape)
            print("Data Type: ", type(test_tensor_Y))
            print("Data Shape: ", test_tensor_Y.shape)

            test_data = TensorDataset(test_tensor_X, test_tensor_Y)
            avl_data_test = AvalancheDataset(test_data)

print(type(avl_data_test), type(avl_data_train[0]))
bm = avl.benchmarks.benchmark_from_datasets(dataset_streams={"train_stream":[avl_data_train], "test_stream":[avl_data_test]})

train_stream = bm.train_stream
test_stream = bm.test_stream

The output I received is as follows:


<class 'numpy.ndarray'> (92, 144, 9)
working
<class 'numpy.ndarray'> (92, 144, 9)
working
<class 'numpy.ndarray'> (91, 144, 9)
working
Data Type:  <class 'torch.Tensor'>
Data Shape:  torch.Size([92, 144, 9])
Data Type:  <class 'torch.Tensor'>
Data Shape:  torch.Size([92])
<class 'avalanche.benchmarks.utils.data.AvalancheDataset'> <class 'avalanche.benchmarks.utils.data.AvalancheDataset'>
Traceback (most recent call last):
  File "/home/aku7rng/git/generalized_timeseries_processing/internal_backbone/SOTA.py", line 110, in <module>
    bm = avl.benchmarks.benchmark_from_datasets(dataset_streams={"train_stream":[avl_data_train], "test_stream":[avl_data_test]})
  File "/home/aku7rng/.conda/envs/sud_env/lib/python3.9/site-packages/avalanche/benchmarks/scenarios/dataset_scenario.py", line 59, in benchmark_from_datasets
    raise ValueError("datasets must be AvalancheDatasets")
ValueError: datasets must be AvalancheDatasets

I am not getting it that why this error is there as clearly the type of data is an Avalanche dataset.

Metadata

Metadata

Assignees

No one assigned

    Labels

    No labels
    No labels

    Type

    No type

    Projects

    No projects

    Milestone

    No milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions