Skip to content

CogitoNTNU/geoguessr-ai

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Geoguessr AI

GitHub Workflow Status (with event) GitHub top language GitHub language count License: MIT Project Version

Geoguessr AI Logo
📋 Table of contents

Description

🌍CV-based AI model that is able to predict location (coordinates) of picture in world🌏

🛠️ Prerequisites

Getting started

  1. Clone the repository:

    git clone https://github.com/CogitoNTNU/geoguessr-ai.git
    cd geoguessr-ai
  2. Install dependencies:

    uv sync
  3. Configure environment variables: This project uses environment variables for configuration. Copy the example environment file to create your own:

    cp .env.example .env

    Then edit the .env file to include your specific configuration settings.

  4. Set up pre commit (only for development):

    uv run pre-commit install

Usage

To run the project, run the following command from the root directory of the project:

🏞️ Help us collect pictures to train on🌉

Go to the How To Collect Pictures for a step by step guide for how to help us collect more pictures. Your help is much appreciated!

📖 Generate Documentation Site

To build and preview the documentation site locally:

uv run mkdocs build
uv run mkdocs serve

This will build the documentation and start a local server at http://127.0.0.1:8000/ where you can browse the docs and API reference. Get the documentation according to the lastes commit on main by viewing the gh-pages branch on GitHub: https://cogitontnu.github.io/geoguessr-ai/.

Testing

To run the test suite, run the following command from the root directory of the project:

uv run pytest --doctest-modules --cov=src --cov-report=html

Team

This project would not have been possible without the hard work and dedication of all of the contributors. Thank you for the time and effort you have put into making this project a reality.

Daniel Neukirch Hansen
Daniel Neukirch Hansen
Jens Martin Norheim Berget
Jens Martin Norheim Berget

Magnus Bryne

Sondre Pettersen

Per Henrik Bergene Holm

Parleen Brar

Romeo Henriksen

Håkon Støren

Vetle Støren

Group picture

License


Distributed under the MIT License. See LICENSE for more information.

About

CV-based AI model that is able to predict location (coordinates) of picture in world.

Topics

Resources

License

Stars

Watchers

Forks

Contributors 13