- Skin cancer detection using a trained Keras model
- Mental health assessment and recommendations
- Resource API for short videos (YouTube integration for skin cancer and mental health)
- Export your trained Keras model as
skin_cancer_model.keras. - Create a folder named
ml-modelsat the root of your project. - Place your model file at:
ml-models/skin_cancer_model.keras
- Endpoint:
POST /api/skin-assessment/detect - Request: Send a
multipart/form-dataPOST request with an image file under the field nameimage. - Response:
{ "prediction": "benign", // or "malignant" "confidence": 0.87 } - Example cURL:
curl -X POST http://localhost:3000/api/skin-assessment/detect \ -F "image=@/path/to/your/image.jpg"
- Endpoint:
GET /api/resources - Returns a list of recent public YouTube videos about skin cancer or mental health (auto-fetched using the YouTube Data API).
- To use, set your YouTube Data API key in
pages/api/resources/index.ts. - Example response:
[ { "id": "QZCGhY5tZ0w", "title": "Skin Cancer Awareness", "description": "A short YouTube video about skin cancer signs and prevention.", "url": "https://www.youtube.com/watch?v=QZCGhY5tZ0w", "category": "skin-cancer", "tags": [], "thumbnail": "https://img.youtube.com/vi/QZCGhY5tZ0w/0.jpg", "author": "Skin Health Channel" } ]
@tensorflow/tfjs-nodesharpformidablenode-fetch(for YouTube API)
- Install dependencies:
npm install
- Add your Keras model as described above.
- (Optional) Add your YouTube Data API key for dynamic video resources.
- Start the development server:
npm run dev
MIT