@@ -147,7 +147,7 @@ def do_train(args):
147147
148148 if args .use_amp :
149149 optimizer .amp_init (places [0 ])
150-
150+
151151 # the best cross-entropy value with label smoothing
152152 loss_normalizer = - (
153153 (1. - args .label_smooth_eps ) * np .log (
@@ -181,6 +181,9 @@ def do_train(args):
181181 'lbl_word' : data [i ][2 ],
182182 } for i in range (trainer_count )],
183183 fetch_list = [sum_cost .name , token_num .name ])
184+ train_batch_cost = time .time () - batch_start
185+ batch_ips_avg .record (train_batch_cost ,
186+ np .asarray (outs [1 ]).sum ())
184187 else :
185188 outs = exe .run (compiled_train_program ,
186189 feed = [{
@@ -189,12 +192,13 @@ def do_train(args):
189192 'lbl_word' : data [i ][2 ],
190193 } for i in range (trainer_count )],
191194 fetch_list = [sum_cost .name , token_num .name ])
195+ train_batch_cost = time .time () - batch_start
196+ batch_ips_avg .record (train_batch_cost ,
197+ np .asarray (outs [1 ]).sum () / trainer_count )
192198 scheduler .step ()
193199
194- train_batch_cost = time .time () - batch_start
195200 reader_cost_avg .record (train_reader_cost )
196201 batch_cost_avg .record (train_batch_cost )
197- batch_ips_avg .record (train_batch_cost , np .asarray (outs [1 ]).sum ())
198202
199203 if step_idx % args .print_step == 0 :
200204 sum_cost_val , token_num_val = np .array (outs [0 ]), np .array (outs [
0 commit comments