diff --git a/.buildkite/test-pipeline.yaml b/.buildkite/test-pipeline.yaml index 93b3e3fe9166..6f38cd313f11 100644 --- a/.buildkite/test-pipeline.yaml +++ b/.buildkite/test-pipeline.yaml @@ -5,11 +5,47 @@ # https://github.com/vllm-project/buildkite-ci/blob/main/scripts/test-template-aws.j2 # to generate the final pipeline yaml file. +# Documentation +# label(str): the name of the test. emoji allowed. +# fast_check(bool): whether to run this on each commit on fastcheck pipeline. +# fast_check_only(bool): run this test on fastcheck pipeline only +# command(str): the single command to run for tests. incompatible with commands. +# commands(list): the list of commands to run for test. incompatbile with command. +# mirror_hardwares(list): the list of hardwares to run the test on as well. currently only supports [amd] +# gpu(str): override the GPU selection for the test. default is on L4 GPUs. currently only supports a100 +# num_gpus(int): override the number of GPUs for the test. default to 1 GPU. currently support 2,4. +# num_nodes(int): whether to simulate multi-node setup by launch multiple containers on one host, +# in this case, commands must be specified. the first command runs on first host, the second +# command runs on the second host. +# working_dir(str): specify the place where command should execute, default to /vllm-workspace/tests +# source_file_dependencies(list): the list of prefix to opt-in the test for, if empty, the test will always run. + +# When adding a test +# - If the test belong to an existing group, add it there +# - If the test is short, add to any existing step +# - If the test takes more than 10min, then it is okay to create a new step. +# Note that all steps execute in parallel. steps: -- label: Async Engine, Inputs, Utils, Worker Test +##### fast check tests ##### + +- label: Documentation Build # 2min + working_dir: "/vllm-workspace/test_docs/docs" fast_check: true - fast_check_only: true + no_gpu: True + commands: + - pip install -r requirements-docs.txt + - SPHINXOPTS=\"-W\" make html + +- label: Async Engine, Inputs, Utils, Worker Test # 15min + fast_check: true + source_file_dependencies: + - vllm/ + - tests/async_engine + - tests/test_inputs + - tests/multimodal + - tests/test_utils + - tests/worker commands: - pytest -v -s async_engine # Async Engine - pytest -v -s test_inputs.py @@ -17,31 +53,12 @@ steps: - pytest -v -s test_utils.py # Utils - pytest -v -s worker # Worker -- label: Metrics, Tracing Test - fast_check: true - fast_check_only: true - commands: - - pytest -v -s metrics # Metrics - - "pip install \ - opentelemetry-sdk \ - opentelemetry-api \ - opentelemetry-exporter-otlp \ - opentelemetry-semantic-conventions-ai" # Tracing - - pytest -v -s tracing - -- label: Regression Test - mirror_hardwares: [amd] - fast_check: true - command: pytest -v -s test_regression.py - working_dir: "/vllm-workspace/tests" # optional - -- label: AsyncEngine Test - #mirror_hardwares: [amd] - command: pytest -v -s async_engine - -- label: Basic Correctness Test +- label: Basic Correctness Test # 30min mirror_hardwares: [amd] fast_check: true + source_file_dependencies: + - vllm/ + - tests/basic_correctness commands: # This flashinfer installation will fail on AMD ROCm, so it is set as optional. - pip install https://github.com/flashinfer-ai/flashinfer/releases/download/v0.1.2/flashinfer-0.1.2+cu121torch2.4-cp310-cp310-linux_x86_64.whl || true @@ -50,215 +67,264 @@ steps: - VLLM_ATTENTION_BACKEND=XFORMERS pytest -v -s basic_correctness/test_chunked_prefill.py - VLLM_ATTENTION_BACKEND=FLASH_ATTN pytest -v -s basic_correctness/test_chunked_prefill.py - VLLM_TEST_ENABLE_ARTIFICIAL_PREEMPT=1 pytest -v -s basic_correctness/test_preemption.py - -- label: Core Test + +- label: Core Test # 10min mirror_hardwares: [amd] fast_check: true + source_file_dependencies: + - vllm/core + - vllm/distributed + - tests/core commands: - pytest -v -s core -- label: Distributed Comm Ops Test - #mirror_hardwares: [amd] - working_dir: "/vllm-workspace/tests" - num_gpus: 2 - commands: - - pytest -v -s distributed/test_comm_ops.py - - pytest -v -s distributed/test_shm_broadcast.py - -- label: 2 Node Tests (4 GPUs in total) - working_dir: "/vllm-workspace/tests" - num_gpus: 2 - num_nodes: 2 - commands: - - # the following commands are for the first node, with ip 192.168.10.10 (ray environment already set up) - - VLLM_TEST_SAME_HOST=0 torchrun --nnodes 2 --nproc-per-node=2 --rdzv_backend=c10d --rdzv_endpoint=192.168.10.10 distributed/test_same_node.py - - VLLM_MULTI_NODE=1 pytest -v -s distributed/test_pipeline_parallel.py - - # the following commands are for the second node, with ip 192.168.10.11 (ray environment already set up) - - VLLM_TEST_SAME_HOST=0 torchrun --nnodes 2 --nproc-per-node=2 --rdzv_backend=c10d --rdzv_endpoint=192.168.10.10 distributed/test_same_node.py - -- label: Distributed Tests (2 GPUs) +- label: Entrypoints Test # 20min + fast_check: true mirror_hardwares: [amd] - working_dir: "/vllm-workspace/tests" - num_gpus: 2 + source_file_dependencies: + - vllm/entrypoints + - tests/entrypoints commands: - - VLLM_TEST_SAME_HOST=1 torchrun --nproc-per-node=4 distributed/test_same_node.py - - TARGET_TEST_SUITE=L4 pytest -v -s distributed/test_basic_distributed_correctness.py - - pytest -v -s distributed/test_chunked_prefill_distributed.py - - pytest -v -s distributed/test_multimodal_broadcast.py - - pytest -v -s spec_decode/e2e/test_integration_dist_tp2.py - - CUDA_VISIBLE_DEVICES=0,1 pytest -v -s test_sharded_state_loader.py - - CUDA_VISIBLE_DEVICES=0,1 pytest -v -s distributed/test_utils.py + - pytest -v -s entrypoints/llm + - pytest -v -s entrypoints/openai -- label: Distributed Tests (4 GPUs) - #mirror_hardwares: [amd] +- label: Distributed Tests (4 GPUs) # 10min working_dir: "/vllm-workspace/tests" num_gpus: 4 fast_check: true + source_file_dependencies: + - vllm/ + - tests/distributed + - tests/spec_decode/e2e/test_integration_dist_tp4 commands: - pytest -v -s distributed/test_pynccl.py - pytest -v -s spec_decode/e2e/test_integration_dist_tp4.py -- label: Pipeline Parallelism Test - working_dir: "/vllm-workspace/tests" - num_gpus: 4 +##### fast check tests ##### +##### 1 GPU test ##### + +- label: Metrics, Tracing Test # 10min + source_file_dependencies: + - vllm/ + - tests/metrics + - tests/tracing commands: - - pytest -v -s distributed/test_pipeline_parallel.py + - pytest -v -s metrics + - "pip install \ + opentelemetry-sdk \ + opentelemetry-api \ + opentelemetry-exporter-otlp \ + opentelemetry-semantic-conventions-ai" + - pytest -v -s tracing -- label: Engine Test +- label: Regression Test # 5min mirror_hardwares: [amd] + source_file_dependencies: + - vllm/ + - tests/test_regression + command: pytest -v -s test_regression.py + working_dir: "/vllm-workspace/tests" # optional + +- label: Engine Test # 10min + mirror_hardwares: [amd] + source_file_dependencies: + - vllm/ + - tests/engine + - tests/tokenization commands: - pytest -v -s engine test_sequence.py test_config.py test_logger.py # OOM in the CI unless we run this separately - pytest -v -s tokenization -- label: Entrypoints Test - fast_check: true - mirror_hardwares: [amd] - - commands: - - pytest -v -s entrypoints/llm - - pytest -v -s entrypoints/openai - -- label: Examples Test +- label: Examples Test # 12min working_dir: "/vllm-workspace/examples" mirror_hardwares: [amd] + source_file_dependencies: + - vllm/entrypoints + - examples/ commands: - # install tensorizer for tensorize_vllm_model.py - - pip install awscli tensorizer + - pip install awscli tensorizer # for llava example and tensorizer test - python3 offline_inference.py - python3 cpu_offload.py - python3 offline_inference_with_prefix.py - python3 llm_engine_example.py - - python3 offline_inference_vision_language.py + - python3 llava_example.py - python3 tensorize_vllm_model.py --model facebook/opt-125m serialize --serialized-directory /tmp/ --suffix v1 && python3 tensorize_vllm_model.py --model facebook/opt-125m deserialize --path-to-tensors /tmp/vllm/facebook/opt-125m/v1/model.tensors -- label: Inputs Test - #mirror_hardwares: [amd] - commands: - - pytest -v -s test_inputs.py - - pytest -v -s multimodal - -# - label: Kernels Test %N -# #mirror_hardwares: [amd] -# commands: -# - pip install https://github.com/flashinfer-ai/flashinfer/releases/download/v0.0.8/flashinfer-0.0.8+cu121torch2.3-cp310-cp310-linux_x86_64.whl -# - pytest -v -s kernels --shard-id=$$BUILDKITE_PARALLEL_JOB --num-shards=$$BUILDKITE_PARALLEL_JOB_COUNT -# parallelism: 4 - -- label: Models Test - #mirror_hardwares: [amd] +- label: Models Test # 1hr10min + source_file_dependencies: + - vllm/ + - tests/models commands: - pip install https://github.com/flashinfer-ai/flashinfer/releases/download/v0.1.2/flashinfer-0.1.2+cu121torch2.4-cp310-cp310-linux_x86_64.whl - pytest -v -s models -m \"not vlm\" -- label: Vision Language Models Test +- label: Vision Language Models Test # 42min mirror_hardwares: [amd] + source_file_dependencies: + - vllm/ commands: - pytest -v -s models -m vlm -- label: Prefix Caching Test +- label: Prefix Caching Test # 7min mirror_hardwares: [amd] + source_file_dependencies: + - vllm/ + - tests/prefix_caching commands: - pytest -v -s prefix_caching -- label: Samplers Test - #mirror_hardwares: [amd] +- label: Samplers Test # 18min + source_file_dependencies: + - vllm/model_executor/layers + - vllm/sampling_metadata.py + - tests/samplers command: pytest -v -s samplers -- label: LogitsProcessor Test +- label: LogitsProcessor Test # 5min mirror_hardwares: [amd] + source_file_dependencies: + - vllm/model_executor/layers + - tests/test_logits_processor command: pytest -v -s test_logits_processor.py -- label: Utils Test - commands: - - pytest -v -s test_utils.py - - pytest -v -s test_embedded_commit.py - -- label: Worker Test - mirror_hardwares: [amd] - command: pytest -v -s worker - -- label: Speculative decoding tests - #mirror_hardwares: [amd] +- label: Speculative decoding tests # 22min + source_file_dependencies: + - vllm/spec_decode + - tests/spec_decode commands: # See https://github.com/vllm-project/vllm/issues/5152 - export VLLM_ATTENTION_BACKEND=XFORMERS - pytest -v -s spec_decode -# - label: LoRA Test %N -# #mirror_hardwares: [amd] -# command: pytest -v -s lora --shard-id=$$BUILDKITE_PARALLEL_JOB --num-shards=$$BUILDKITE_PARALLEL_JOB_COUNT --ignore=lora/test_long_context.py -# parallelism: 4 - -# - label: LoRA Long Context (Distributed) -# #mirror_hardwares: [amd] -# num_gpus: 4 -# # This test runs llama 13B, so it is required to run on 4 GPUs. -# commands: -# # FIXIT: find out which code initialize cuda before running the test -# # before the fix, we need to use spawn to test it -# - export VLLM_WORKER_MULTIPROC_METHOD=spawn -# - pytest -v -s -x lora/test_long_context.py - -- label: Tensorizer Test - #mirror_hardwares: [amd] - fast_check: true +- label: LoRA Test %N # 30min each + source_file_dependencies: + - vllm/lora + - csrc/punica + - tests/lora + command: pytest -v -s lora --shard-id=$$BUILDKITE_PARALLEL_JOB --num-shards=$$BUILDKITE_PARALLEL_JOB_COUNT --ignore=lora/test_long_context.py + parallelism: 4 + +- label: Kernels Test %N # 30min each + source_file_dependencies: + - csrc/ + - vllm/attention + - tests/kernels + commands: + - pip install https://github.com/flashinfer-ai/flashinfer/releases/download/v0.1.2/flashinfer-0.1.2+cu121torch2.4-cp310-cp310-linux_x86_64.whl + - pytest -v -s kernels --shard-id=$$BUILDKITE_PARALLEL_JOB --num-shards=$$BUILDKITE_PARALLEL_JOB_COUNT + parallelism: 4 + +- label: Tensorizer Test # 11min + soft_fail: true + source_file_dependencies: + - vllm/model_executor/model_loader + - tests/tensorizer_loader commands: - apt-get install -y curl libsodium23 - export VLLM_WORKER_MULTIPROC_METHOD=spawn - pytest -v -s tensorizer_loader -- label: Metrics Test - mirror_hardwares: [amd] - command: pytest -v -s metrics - -- label: Quantization Test - #mirror_hardwares: [amd] - command: pytest -v -s quantization - -- label: Tracing Test - commands: - - "pip install \ - opentelemetry-sdk \ - opentelemetry-api \ - opentelemetry-exporter-otlp \ - opentelemetry-semantic-conventions-ai" - - pytest -v -s tracing - -- label: Benchmarks +- label: Benchmarks # 9min working_dir: "/vllm-workspace/.buildkite" mirror_hardwares: [amd] + source_file_dependencies: + - benchmarks/ commands: - pip install aiohttp - bash run-benchmarks.sh -- label: LM Eval Small Models +- label: Quantization Test # 15min + source_file_dependencies: + - csrc/ + - vllm/model_executor/layers/quantization + - tests/quantization + command: pytest -v -s quantization + +- label: LM Eval Small Models # 53min working_dir: "/vllm-workspace/.buildkite/lm-eval-harness" + source_file_dependencies: + - csrc/ + - vllm/model_executor/layers/quantization commands: - pip install lm-eval - export VLLM_WORKER_MULTIPROC_METHOD=spawn - bash ./run-tests.sh -c configs/models-small.txt -t 1 -- label: LM Eval Large Models - gpu: a100 + +##### 1 GPU test ##### +##### multi gpus test ##### + +- label: Distributed Comm Ops Test # 7min + working_dir: "/vllm-workspace/tests" + num_gpus: 2 + source_file_dependencies: + - vllm/distributed + - tests/distributed + commands: + - pytest -v -s distributed/test_comm_ops.py + - pytest -v -s distributed/test_shm_broadcast.py + +- label: 2 Node Tests (4 GPUs in total) # 16min + working_dir: "/vllm-workspace/tests" + num_gpus: 2 + num_nodes: 2 + source_file_dependencies: + - vllm/ + - tests/distributed/test_same_node + commands: + - # the following commands are for the first node, with ip 192.168.10.10 (ray environment already set up) + - VLLM_TEST_SAME_HOST=0 torchrun --nnodes 2 --nproc-per-node=2 --rdzv_backend=c10d --rdzv_endpoint=192.168.10.10 distributed/test_same_node.py + - VLLM_MULTI_NODE=1 pytest -v -s distributed/test_pipeline_parallel.py + - # the following commands are for the second node, with ip 192.168.10.11 (ray environment already set up) + - VLLM_TEST_SAME_HOST=0 torchrun --nnodes 2 --nproc-per-node=2 --rdzv_backend=c10d --rdzv_endpoint=192.168.10.10 distributed/test_same_node.py + +- label: Distributed Tests (2 GPUs) # 28min + mirror_hardwares: [amd] + working_dir: "/vllm-workspace/tests" + num_gpus: 2 + source_file_dependencies: + - vllm/ + - tests/distributed + commands: + - VLLM_TEST_SAME_HOST=1 torchrun --nproc-per-node=4 distributed/test_same_node.py + - TARGET_TEST_SUITE=L4 pytest -v -s distributed/test_basic_distributed_correctness.py + - pytest -v -s distributed/test_chunked_prefill_distributed.py + - pytest -v -s distributed/test_multimodal_broadcast.py + - pytest -v -s spec_decode/e2e/test_integration_dist_tp2.py + - CUDA_VISIBLE_DEVICES=0,1 pytest -v -s test_sharded_state_loader.py + - CUDA_VISIBLE_DEVICES=0,1 pytest -v -s distributed/test_utils.py + +- label: Pipeline Parallelism Test # 23min + working_dir: "/vllm-workspace/tests" num_gpus: 4 - working_dir: "/vllm-workspace/.buildkite/lm-eval-harness" + source_file_dependencies: + - vllm/ + - tests/distributed/test_pipeline_parallel commands: - - pip install lm-eval - - export VLLM_WORKER_MULTIPROC_METHOD=spawn - - bash ./run-tests.sh -c configs/models-large.txt -t 4 + - pytest -v -s distributed/test_pipeline_parallel.py -- label: Documentation Build - working_dir: "/vllm-workspace/test_docs/docs" - fast_check: true - no_gpu: True +- label: LoRA Long Context (Distributed) # 11min + # This test runs llama 13B, so it is required to run on 4 GPUs. + num_gpus: 4 + source_file_dependencies: + - vllm/lora + - csrc/punica + - tests/lora/test_long_context commands: - - pip install -r requirements-docs.txt - - SPHINXOPTS=\"-W\" make html + # FIXIT: find out which code initialize cuda before running the test + # before the fix, we need to use spawn to test it + - export VLLM_WORKER_MULTIPROC_METHOD=spawn + - pytest -v -s -x lora/test_long_context.py + +##### multi gpus test ##### +##### A100 test ##### -- label: Distributed Tests (A100) +- label: Distributed Tests (A100) # optional gpu: a100 num_gpus: 4 + source_file_dependencies: + - vllm/ commands: # NOTE: don't test llama model here, it seems hf implementation is buggy # see https://github.com/vllm-project/vllm/pull/5689 for details @@ -266,3 +332,15 @@ steps: - pip install https://github.com/flashinfer-ai/flashinfer/releases/download/v0.1.2/flashinfer-0.1.2+cu121torch2.4-cp310-cp310-linux_x86_64.whl - TARGET_TEST_SUITE=A100 pytest -v -s distributed/test_basic_distributed_correctness.py - pytest -v -s -x lora/test_mixtral.py + +- label: LM Eval Large Models # optional + gpu: a100 + num_gpus: 4 + working_dir: "/vllm-workspace/.buildkite/lm-eval-harness" + source_file_dependencies: + - csrc/ + - vllm/model_executor/layers/quantization + commands: + - pip install lm-eval + - export VLLM_WORKER_MULTIPROC_METHOD=spawn + - bash ./run-tests.sh -c configs/models-large.txt -t 4