Skip to content
Closed
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
44 changes: 32 additions & 12 deletions benchmarks/kernels/benchmark_mixtral_moe.py
Original file line number Diff line number Diff line change
Expand Up @@ -12,22 +12,39 @@

def main():
method = fused_moe
for bs in [
1, 2, 4, 8, 16, 24, 32, 48, 64, 96, 128, 256, 512, 1024, 1536,
2048, 3072, 4096
]:
run_grid(bs, method=method)


def run_grid(bs, method):
d_model = 4096
num_total_experts = 8
top_k = 2
tp_size = 2
model_intermediate_size = 14336
num_layers = 32
num_calls = 100
best_configs = {}

for bs in [
1, 2, 4, 8, 16, 24, 32, 48, 64, 96, 128, 256, 512, 1024, 1536,
2048, 3072, 4096
]:
best_configs.update(
run_grid(bs=bs,
method=method,
d_model=d_model,
num_total_experts=num_total_experts,
top_k=top_k,
tp_size=tp_size,
model_intermediate_size=model_intermediate_size,
num_layers=num_layers))

device_name = torch.cuda.get_device_name().replace(" ", "_")
filename = f"E={num_total_experts},N={model_intermediate_size//tp_size},device_name={device_name}.json"
print(f"writing combined configs to file {filename}")
with open(filename, 'w') as fd:
json.dump(best_configs, fd, indent=4)


def run_grid(bs: int, method, d_model: int, num_total_experts: int, top_k: int,
tp_size: int, model_intermediate_size: int,
num_layers: int) -> float:
num_calls = 100
num_warmup_trials = 1
num_trials = 1

Expand Down Expand Up @@ -64,7 +81,7 @@ def run_grid(bs, method):
print(f'{tp_size=} {bs=}')
print(f'{config}')
# warmup
print(f'warming up')
print('warming up')
try:
for _ in range(num_warmup_trials):
run_timing(
Expand All @@ -82,7 +99,7 @@ def run_grid(bs, method):
continue

# trial
print(f'benchmarking')
print('benchmarking')
for _ in range(num_trials):
kernel_dur_ms = run_timing(
num_calls=num_calls,
Expand All @@ -109,11 +126,14 @@ def run_grid(bs, method):

print("best_time_us", best_time_us)
print("best_config", best_config)
bs_best_config = {str(bs): best_config}

filename = "/tmp/config.jsonl"
print(f"writing config to file {filename}")
with open(filename, "a") as f:
f.write(json.dumps({str(bs): best_config}) + "\n")
f.write(json.dumps(bs_best_config) + "\n")

return bs_best_config


def run_timing(num_calls: int, bs: int, d_model: int, num_total_experts: int,
Expand Down
Original file line number Diff line number Diff line change
@@ -0,0 +1,146 @@
{
"1": {
"BLOCK_SIZE_M": 16,
"BLOCK_SIZE_N": 128,
"BLOCK_SIZE_K": 128,
"GROUP_SIZE_M": 64,
"num_warps": 4,
"num_stages": 4
},
"2": {
"BLOCK_SIZE_M": 16,
"BLOCK_SIZE_N": 64,
"BLOCK_SIZE_K": 256,
"GROUP_SIZE_M": 64,
"num_warps": 4,
"num_stages": 4
},
"4": {
"BLOCK_SIZE_M": 16,
"BLOCK_SIZE_N": 64,
"BLOCK_SIZE_K": 128,
"GROUP_SIZE_M": 32,
"num_warps": 4,
"num_stages": 4
},
"8": {
"BLOCK_SIZE_M": 16,
"BLOCK_SIZE_N": 64,
"BLOCK_SIZE_K": 128,
"GROUP_SIZE_M": 32,
"num_warps": 4,
"num_stages": 4
},
"16": {
"BLOCK_SIZE_M": 16,
"BLOCK_SIZE_N": 64,
"BLOCK_SIZE_K": 256,
"GROUP_SIZE_M": 1,
"num_warps": 4,
"num_stages": 4
},
"24": {
"BLOCK_SIZE_M": 16,
"BLOCK_SIZE_N": 128,
"BLOCK_SIZE_K": 128,
"GROUP_SIZE_M": 1,
"num_warps": 4,
"num_stages": 4
},
"32": {
"BLOCK_SIZE_M": 16,
"BLOCK_SIZE_N": 128,
"BLOCK_SIZE_K": 128,
"GROUP_SIZE_M": 1,
"num_warps": 4,
"num_stages": 4
},
"48": {
"BLOCK_SIZE_M": 32,
"BLOCK_SIZE_N": 128,
"BLOCK_SIZE_K": 128,
"GROUP_SIZE_M": 1,
"num_warps": 4,
"num_stages": 4
},
"64": {
"BLOCK_SIZE_M": 32,
"BLOCK_SIZE_N": 128,
"BLOCK_SIZE_K": 128,
"GROUP_SIZE_M": 1,
"num_warps": 4,
"num_stages": 4
},
"96": {
"BLOCK_SIZE_M": 32,
"BLOCK_SIZE_N": 128,
"BLOCK_SIZE_K": 128,
"GROUP_SIZE_M": 64,
"num_warps": 4,
"num_stages": 4
},
"128": {
"BLOCK_SIZE_M": 32,
"BLOCK_SIZE_N": 128,
"BLOCK_SIZE_K": 128,
"GROUP_SIZE_M": 16,
"num_warps": 4,
"num_stages": 4
},
"256": {
"BLOCK_SIZE_M": 64,
"BLOCK_SIZE_N": 256,
"BLOCK_SIZE_K": 64,
"GROUP_SIZE_M": 32,
"num_warps": 8,
"num_stages": 4
},
"512": {
"BLOCK_SIZE_M": 64,
"BLOCK_SIZE_N": 256,
"BLOCK_SIZE_K": 64,
"GROUP_SIZE_M": 32,
"num_warps": 8,
"num_stages": 4
},
"1024": {
"BLOCK_SIZE_M": 64,
"BLOCK_SIZE_N": 256,
"BLOCK_SIZE_K": 64,
"GROUP_SIZE_M": 64,
"num_warps": 8,
"num_stages": 4
},
"1536": {
"BLOCK_SIZE_M": 128,
"BLOCK_SIZE_N": 128,
"BLOCK_SIZE_K": 64,
"GROUP_SIZE_M": 64,
"num_warps": 8,
"num_stages": 4
},
"2048": {
"BLOCK_SIZE_M": 128,
"BLOCK_SIZE_N": 128,
"BLOCK_SIZE_K": 64,
"GROUP_SIZE_M": 16,
"num_warps": 8,
"num_stages": 4
},
"3072": {
"BLOCK_SIZE_M": 128,
"BLOCK_SIZE_N": 128,
"BLOCK_SIZE_K": 64,
"GROUP_SIZE_M": 16,
"num_warps": 8,
"num_stages": 4
},
"4096": {
"BLOCK_SIZE_M": 128,
"BLOCK_SIZE_N": 128,
"BLOCK_SIZE_K": 64,
"GROUP_SIZE_M": 16,
"num_warps": 8,
"num_stages": 4
}
}