diff --git a/.buildkite/test-pipeline.yaml b/.buildkite/test-pipeline.yaml index 08c10180fc22..82edb9745544 100644 --- a/.buildkite/test-pipeline.yaml +++ b/.buildkite/test-pipeline.yaml @@ -46,22 +46,18 @@ steps: mirror_hardwares: [amdexperimental] source_file_dependencies: - vllm/ - - tests/async_engine - tests/test_inputs.py - tests/test_outputs.py - tests/multimodal - tests/utils_ - - tests/worker - tests/standalone_tests/lazy_imports.py - tests/transformers_utils commands: - python3 standalone_tests/lazy_imports.py - - pytest -v -s async_engine # AsyncLLMEngine - pytest -v -s test_inputs.py - pytest -v -s test_outputs.py - pytest -v -s multimodal - pytest -v -s utils_ # Utils - - pytest -v -s worker # Worker - pytest -v -s transformers_utils # transformers_utils - label: Python-only Installation Test # 10min @@ -82,14 +78,12 @@ steps: - vllm/ - tests/basic_correctness/test_basic_correctness - tests/basic_correctness/test_cpu_offload - - tests/basic_correctness/test_preemption - tests/basic_correctness/test_cumem.py commands: - export VLLM_WORKER_MULTIPROC_METHOD=spawn - pytest -v -s basic_correctness/test_cumem.py - pytest -v -s basic_correctness/test_basic_correctness.py - pytest -v -s basic_correctness/test_cpu_offload.py - - VLLM_TEST_ENABLE_ARTIFICIAL_PREEMPT=1 pytest -v -s basic_correctness/test_preemption.py - label: Entrypoints Unit Tests # 5min timeout_in_minutes: 10 diff --git a/.github/CODEOWNERS b/.github/CODEOWNERS index 771dd2e17258..b8d6db06548d 100644 --- a/.github/CODEOWNERS +++ b/.github/CODEOWNERS @@ -41,7 +41,6 @@ CMakeLists.txt @tlrmchlsmth @LucasWilkinson # Test ownership /.buildkite/lm-eval-harness @mgoin @simon-mo -/tests/async_engine @njhill @robertgshaw2-redhat @simon-mo /tests/distributed/test_multi_node_assignment.py @youkaichao /tests/distributed/test_pipeline_parallel.py @youkaichao /tests/distributed/test_same_node.py @youkaichao @@ -50,7 +49,6 @@ CMakeLists.txt @tlrmchlsmth @LucasWilkinson /tests/kernels @mgoin @tlrmchlsmth @WoosukKwon @yewentao256 /tests/models @DarkLight1337 @ywang96 /tests/multimodal @DarkLight1337 @ywang96 @NickLucche -/tests/prefix_caching @comaniac @KuntaiDu /tests/quantization @mgoin @robertgshaw2-redhat @yewentao256 /tests/test_inputs.py @DarkLight1337 @ywang96 /tests/v1/entrypoints/llm/test_struct_output_generate.py @mgoin @russellb @aarnphm diff --git a/tests/async_engine/__init__.py b/tests/async_engine/__init__.py deleted file mode 100644 index e69de29bb2d1..000000000000 diff --git a/tests/async_engine/api_server_async_engine.py b/tests/async_engine/api_server_async_engine.py deleted file mode 100644 index ec6b20f5e04b..000000000000 --- a/tests/async_engine/api_server_async_engine.py +++ /dev/null @@ -1,54 +0,0 @@ -# SPDX-License-Identifier: Apache-2.0 -# SPDX-FileCopyrightText: Copyright contributors to the vLLM project -"""vllm.entrypoints.api_server with some extra logging for testing.""" -from collections.abc import Iterable -from typing import Any - -import uvicorn -from fastapi.responses import JSONResponse, Response - -import vllm.entrypoints.api_server -import vllm.envs as envs -from vllm.engine.arg_utils import AsyncEngineArgs -from vllm.engine.async_llm_engine import AsyncLLMEngine -from vllm.utils import FlexibleArgumentParser - -app = vllm.entrypoints.api_server.app - - -class AsyncLLMEngineWithStats(AsyncLLMEngine): - - def __init__(self, *args, **kwargs): - super().__init__(*args, **kwargs) - self._num_aborts = 0 - - async def _engine_abort(self, request_ids: Iterable[str]): - ids = list(request_ids) - self._num_aborts += len(ids) - await super()._engine_abort(ids) - - def testing_stats(self) -> dict[str, Any]: - return {"num_aborted_requests": self._num_aborts} - - -@app.get("/stats") -def stats() -> Response: - """Get the statistics of the engine.""" - return JSONResponse(engine.testing_stats()) - - -if __name__ == "__main__": - parser = FlexibleArgumentParser() - parser.add_argument("--host", type=str, default="localhost") - parser.add_argument("--port", type=int, default=8000) - parser = AsyncEngineArgs.add_cli_args(parser) - args = parser.parse_args() - - engine_args = AsyncEngineArgs.from_cli_args(args) - engine = AsyncLLMEngineWithStats.from_engine_args(engine_args) - vllm.entrypoints.api_server.engine = engine - uvicorn.run(app, - host=args.host, - port=args.port, - log_level="debug", - timeout_keep_alive=envs.VLLM_HTTP_TIMEOUT_KEEP_ALIVE) diff --git a/tests/async_engine/conftest.py b/tests/async_engine/conftest.py deleted file mode 100644 index 375b248ebeda..000000000000 --- a/tests/async_engine/conftest.py +++ /dev/null @@ -1,12 +0,0 @@ -# SPDX-License-Identifier: Apache-2.0 -# SPDX-FileCopyrightText: Copyright contributors to the vLLM project -import pytest - - -@pytest.fixture(scope="function", autouse=True) -def use_v0_only(monkeypatch): - """ - Since this module is V0 only, set VLLM_USE_V1=0 for - all tests in the module. - """ - monkeypatch.setenv('VLLM_USE_V1', '0') diff --git a/tests/async_engine/test_api_server.py b/tests/async_engine/test_api_server.py deleted file mode 100644 index 07370a880329..000000000000 --- a/tests/async_engine/test_api_server.py +++ /dev/null @@ -1,139 +0,0 @@ -# SPDX-License-Identifier: Apache-2.0 -# SPDX-FileCopyrightText: Copyright contributors to the vLLM project - -import copyreg -import os -import subprocess -import sys -import time -from multiprocessing import Pool -from pathlib import Path - -import pytest -import requests -import urllib3.exceptions - - -def _pickle_new_connection_error(obj): - """Custom pickler for NewConnectionError to fix tblib compatibility.""" - # Extract the original message by removing the "conn: " prefix - full_message = obj.args[0] if obj.args else "" - if ': ' in full_message: - # Split off the connection part and keep the actual message - _, actual_message = full_message.split(': ', 1) - else: - actual_message = full_message - return _unpickle_new_connection_error, (actual_message, ) - - -def _unpickle_new_connection_error(message): - """Custom unpickler for NewConnectionError.""" - # Create with None as conn and the actual message - return urllib3.exceptions.NewConnectionError(None, message) - - -# Register the custom pickle/unpickle functions for tblib compatibility -copyreg.pickle(urllib3.exceptions.NewConnectionError, - _pickle_new_connection_error) - - -def _query_server(prompt: str, max_tokens: int = 5) -> dict: - response = requests.post("http://localhost:8000/generate", - json={ - "prompt": prompt, - "max_tokens": max_tokens, - "temperature": 0, - "ignore_eos": True - }) - response.raise_for_status() - return response.json() - - -def _query_server_long(prompt: str) -> dict: - return _query_server(prompt, max_tokens=500) - - -@pytest.fixture -def api_server(distributed_executor_backend: str): - script_path = Path(__file__).parent.joinpath( - "api_server_async_engine.py").absolute() - commands = [ - sys.executable, - "-u", - str(script_path), - "--model", - "facebook/opt-125m", - "--host", - "127.0.0.1", - "--distributed-executor-backend", - distributed_executor_backend, - ] - - # API Server Test Requires V0. - my_env = os.environ.copy() - my_env["VLLM_USE_V1"] = "0" - uvicorn_process = subprocess.Popen(commands, env=my_env) - yield - uvicorn_process.terminate() - - -@pytest.mark.timeout(300) -@pytest.mark.parametrize("distributed_executor_backend", ["mp", "ray"]) -def test_api_server(api_server, distributed_executor_backend: str): - """ - Run the API server and test it. - - We run both the server and requests in separate processes. - - We test that the server can handle incoming requests, including - multiple requests at the same time, and that it can handle requests - being cancelled without crashing. - """ - with Pool(32) as pool: - # Wait until the server is ready - prompts = ["warm up"] * 1 - result = None - while not result: - try: - for r in pool.map(_query_server, prompts): - result = r - break - except requests.exceptions.ConnectionError: - time.sleep(1) - - # Actual tests start here - # Try with 1 prompt - for result in pool.map(_query_server, prompts): - assert result - - num_aborted_requests = requests.get( - "http://localhost:8000/stats").json()["num_aborted_requests"] - assert num_aborted_requests == 0 - - # Try with 100 prompts - prompts = ["test prompt"] * 100 - for result in pool.map(_query_server, prompts): - assert result - - with Pool(32) as pool: - # Cancel requests - prompts = ["canceled requests"] * 100 - pool.map_async(_query_server_long, prompts) - time.sleep(0.01) - pool.terminate() - pool.join() - - # check cancellation stats - # give it some time to update the stats - time.sleep(1) - - num_aborted_requests = requests.get( - "http://localhost:8000/stats").json()["num_aborted_requests"] - assert num_aborted_requests > 0 - - # check that server still runs after cancellations - with Pool(32) as pool: - # Try with 100 prompts - prompts = ["test prompt after canceled"] * 100 - for result in pool.map(_query_server, prompts): - assert result diff --git a/tests/async_engine/test_request_tracker.py b/tests/async_engine/test_request_tracker.py deleted file mode 100644 index 1851eeeda790..000000000000 --- a/tests/async_engine/test_request_tracker.py +++ /dev/null @@ -1,71 +0,0 @@ -# SPDX-License-Identifier: Apache-2.0 -# SPDX-FileCopyrightText: Copyright contributors to the vLLM project - -import pytest - -from vllm.engine.async_llm_engine import RequestTracker -from vllm.outputs import RequestOutput - - -@pytest.mark.asyncio -async def test_request_tracker(): - tracker = RequestTracker() - stream_1 = tracker.add_request("1") - assert tracker.new_requests_event.is_set() - await tracker.wait_for_new_requests() - new, aborted = tracker.get_new_and_aborted_requests() - assert not tracker.new_requests_event.is_set() - assert len(new) == 1 - assert new[0]["request_id"] == "1" - assert not aborted - assert not stream_1.finished - - stream_2 = tracker.add_request("2") - stream_3 = tracker.add_request("3") - assert tracker.new_requests_event.is_set() - await tracker.wait_for_new_requests() - new, aborted = tracker.get_new_and_aborted_requests() - assert not tracker.new_requests_event.is_set() - assert len(new) == 2 - assert new[0]["request_id"] == "2" - assert new[1]["request_id"] == "3" - assert not aborted - assert not stream_2.finished - assert not stream_3.finished - - # request_ids must be unique - with pytest.raises(KeyError): - tracker.add_request("1") - assert not tracker.new_requests_event.is_set() - - tracker.abort_request("1") - new, aborted = tracker.get_new_and_aborted_requests() - assert len(aborted) == 1 - assert "1" in aborted - assert not new - assert stream_1.finished - - stream_4 = tracker.add_request("4") - tracker.abort_request("4") - assert tracker.new_requests_event.is_set() - await tracker.wait_for_new_requests() - new, aborted = tracker.get_new_and_aborted_requests() - # aborted new requests will cancel each other out - - # there's no need for them to propagate into the - # engine - assert not aborted - assert not new - assert stream_4.finished - - stream_5 = tracker.add_request("5") - assert tracker.new_requests_event.is_set() - tracker.process_request_output( - RequestOutput("2", "output", [], [], [], finished=True)) - await tracker.wait_for_new_requests() - new, aborted = tracker.get_new_and_aborted_requests() - assert not tracker.new_requests_event.is_set() - assert not aborted - assert len(new) == 1 - assert new[0]["request_id"] == "5" - assert stream_2.finished - assert not stream_5.finished diff --git a/tests/basic_correctness/test_preemption.py b/tests/basic_correctness/test_preemption.py deleted file mode 100644 index db2fa2f6bef6..000000000000 --- a/tests/basic_correctness/test_preemption.py +++ /dev/null @@ -1,189 +0,0 @@ -# SPDX-License-Identifier: Apache-2.0 -# SPDX-FileCopyrightText: Copyright contributors to the vLLM project -"""Compare the short outputs of HF and vLLM when using greedy sampling. - -VLLM_TEST_ENABLE_ARTIFICIAL_PREEMPT=1 has to be set before running this test. - -Run `VLLM_TEST_ENABLE_ARTIFICIAL_PREEMPT=1 -pytest tests/basic_correctness/test_preemption.py`. -""" -import pytest -from prometheus_client import REGISTRY - -import vllm.envs as envs -from vllm import SamplingParams -from vllm.core.scheduler import (ARTIFICIAL_PREEMPTION_MAX_CNT, - ENABLE_ARTIFICIAL_PREEMPT) - -from ..models.utils import check_outputs_equal - -MODELS = [ - "distilbert/distilgpt2", -] - - -@pytest.fixture(scope="function", autouse=True) -def use_v0_only(monkeypatch): - """ - We should enable this for V1, but VLLM_TEST_ENABLE_ARTIFICIAL_PREEMPT, - so use VLLM_USE_V1=0 for all tests in the file. - """ - monkeypatch.setenv('VLLM_USE_V1', '0') - - -@pytest.fixture(scope="module", autouse=True) -def check_settings(): - assert ENABLE_ARTIFICIAL_PREEMPT is True, ( - "Use an env var VLLM_TEST_ENABLE_ARTIFICIAL_PREEMPT=1." - "`VLLM_TEST_ENABLE_ARTIFICIAL_PREEMPT=1 " - "pytest tests/basic_correctness/test_preemption.py`") - - -@pytest.fixture -def distributed_executor_backend() -> str: - # When SPMD worker is used, use distributed_executor_backend="ray" - # to test delta input optimization works with preemption. - return "ray" if envs.VLLM_USE_RAY_SPMD_WORKER else "mp" - - -@pytest.mark.parametrize("model", MODELS) -@pytest.mark.parametrize("dtype", ["half"]) -@pytest.mark.parametrize("max_tokens", [96]) -@pytest.mark.parametrize("chunked_prefill_token_size", [16]) -def test_chunked_prefill_recompute( - hf_runner, - vllm_runner, - example_prompts, - model: str, - dtype: str, - max_tokens: int, - chunked_prefill_token_size: int, - distributed_executor_backend: str, -) -> None: - """Ensure that chunked prefill works with preemption.""" - max_num_seqs = min(chunked_prefill_token_size, 256) - enable_chunked_prefill = False - max_num_batched_tokens = None - if chunked_prefill_token_size != -1: - enable_chunked_prefill = True - max_num_batched_tokens = chunked_prefill_token_size - - with hf_runner(model, dtype=dtype) as hf_model: - hf_outputs = hf_model.generate_greedy(example_prompts, max_tokens) - - with vllm_runner( - model, - dtype=dtype, - max_num_batched_tokens=max_num_batched_tokens, - enable_chunked_prefill=enable_chunked_prefill, - max_num_seqs=max_num_seqs, - distributed_executor_backend=distributed_executor_backend, - disable_log_stats=False, - ) as vllm_model: - vllm_outputs = vllm_model.generate_greedy(example_prompts, max_tokens) - assert (vllm_model.llm.llm_engine.scheduler[0].artificial_preempt_cnt - < ARTIFICIAL_PREEMPTION_MAX_CNT) - - for i in range(len(example_prompts)): - hf_output_ids, hf_output_str = hf_outputs[i] - vllm_output_ids, vllm_output_str = vllm_outputs[i] - assert hf_output_str == vllm_output_str, ( - f"Test{i}:\nHF: {hf_output_str!r}\nvLLM: {vllm_output_str!r}") - assert hf_output_ids == vllm_output_ids, ( - f"Test{i}:\nHF: {hf_output_ids}\nvLLM: {vllm_output_ids}") - - -@pytest.mark.parametrize("model", MODELS) -@pytest.mark.parametrize("dtype", ["float"]) -@pytest.mark.parametrize("max_tokens", [96]) -def test_preemption( - caplog_vllm, - hf_runner, - vllm_runner, - example_prompts, - model: str, - dtype: str, - max_tokens: int, - distributed_executor_backend: str, -) -> None: - """By default, recompute preemption is enabled""" - - with hf_runner(model, dtype=dtype) as hf_model: - hf_outputs = hf_model.generate_greedy(example_prompts, max_tokens) - - with vllm_runner( - model, - dtype=dtype, - disable_log_stats=False, - distributed_executor_backend=distributed_executor_backend, - ) as vllm_model: - vllm_outputs = vllm_model.generate_greedy(example_prompts, max_tokens) - assert (vllm_model.llm.llm_engine.scheduler[0].artificial_preempt_cnt - < ARTIFICIAL_PREEMPTION_MAX_CNT) - total_preemption = ( - vllm_model.llm.llm_engine.scheduler[0].num_cumulative_preemption) - - check_outputs_equal( - outputs_0_lst=hf_outputs, - outputs_1_lst=vllm_outputs, - name_0="hf", - name_1="vllm", - ) - - assert ("is preempted by PreemptionMode.RECOMPUTE mode because there " - "is not enough KV cache space." in caplog_vllm.text) - # Ensure the count bucket of request-level histogram metrics matches - # the number of requests as a simple sanity check to ensure metrics are - # generated - preemption_metrics = None - for m in REGISTRY.collect(): - if m.name == "vllm:num_preemptions": - preemption_metrics = m - assert preemption_metrics is not None - total_recorded_preemption = 0 - for sample in preemption_metrics.samples: - total_recorded_preemption += sample.value - assert total_preemption == total_recorded_preemption - - -@pytest.mark.parametrize("model", MODELS) -@pytest.mark.parametrize("dtype", ["float"]) -@pytest.mark.parametrize("max_tokens", [96]) -def test_preemption_infeasible( - vllm_runner, - example_prompts, - model: str, - dtype: str, - max_tokens: int, - distributed_executor_backend: str, -) -> None: - """Verify infeasible preemption request will be ignored.""" - BLOCK_SIZE = 16 - prefill_blocks = 2 - decode_blocks = max_tokens // BLOCK_SIZE - with vllm_runner( - model, - dtype=dtype, - block_size=BLOCK_SIZE, - # Not enough gpu blocks to complete a single sequence. - # preemption should happen, and the sequence should be - # ignored instead of hanging forever. - num_gpu_blocks_override=prefill_blocks + decode_blocks // 2, - max_model_len=((prefill_blocks + decode_blocks // 2) * BLOCK_SIZE), - distributed_executor_backend=distributed_executor_backend, - ) as vllm_model: - sampling_params = SamplingParams(max_tokens=max_tokens, - ignore_eos=True) - req_outputs = vllm_model.llm.generate( - example_prompts, - sampling_params=sampling_params, - ) - - assert (vllm_model.llm.llm_engine.scheduler[0].artificial_preempt_cnt - < ARTIFICIAL_PREEMPTION_MAX_CNT) - - # Verify the request is ignored and not hang. - for req_output in req_outputs: - outputs = req_output.outputs - assert len(outputs) == 1 - assert outputs[0].finish_reason == "length" diff --git a/tests/detokenizer/conftest.py b/tests/detokenizer/conftest.py deleted file mode 100644 index f2c125355c83..000000000000 --- a/tests/detokenizer/conftest.py +++ /dev/null @@ -1,11 +0,0 @@ -# SPDX-License-Identifier: Apache-2.0 -# SPDX-FileCopyrightText: Copyright contributors to the vLLM project -import pytest - - -@pytest.fixture(autouse=True) -def v1(run_with_both_engines): - # Simple autouse wrapper to run both engines for each test - # This can be promoted up to conftest.py to run for every - # test in a package - pass diff --git a/tests/detokenizer/test_stop_checker.py b/tests/detokenizer/test_stop_checker.py deleted file mode 100644 index 2ca10c072b34..000000000000 --- a/tests/detokenizer/test_stop_checker.py +++ /dev/null @@ -1,83 +0,0 @@ -# SPDX-License-Identifier: Apache-2.0 -# SPDX-FileCopyrightText: Copyright contributors to the vLLM project - -import pytest - -from vllm.engine.output_processor.stop_checker import StopChecker -from vllm.inputs import token_inputs -from vllm.sampling_params import SamplingParams -from vllm.sequence import Logprob, Sequence, SequenceStatus - - -def sequence_with_eos(text: str, eos_token: str, - eos_token_id: int) -> Sequence: - """ - Create a Sequence that ends with an EOS token. - """ - seq = Sequence( - seq_id=0, - inputs=token_inputs([]), - block_size=16, - eos_token_id=eos_token_id, - ) - seq.output_text = text + eos_token - - offset = eos_token_id + 1 - for i in range(offset, len(text) + offset): - seq.append_token_id(token_id=i, logprobs={i: Logprob(0.0)}) - seq.append_token_id(token_id=eos_token_id, - logprobs={eos_token_id: Logprob(0.0)}) - - seq.status = SequenceStatus.RUNNING - - return seq - - -@pytest.mark.parametrize(["text_wo_eos", "eos_token", "eos_token_id"], [ - ("This text ends with EOS token", "", 2), -]) -@pytest.mark.parametrize("ignore_eos", [True, False]) -@pytest.mark.parametrize("include_stop_str_in_output", [True, False]) -@pytest.mark.skip_global_cleanup -def test_stop_on_eos_token(text_wo_eos: str, eos_token: str, eos_token_id: int, - ignore_eos: bool, include_stop_str_in_output: bool): - """ - Test the behavior of the StopChecker's maybe_stop_sequence method - when an EOS token is encountered. - - This test covers: - - When the EOS token should stop the sequence and be removed from the output - - When the EOS token should stop the sequence and be included in the output - - When the EOS token should be ignored, and the sequence continues - """ - - stop_checker = StopChecker(max_model_len=1024) - - seq = sequence_with_eos( - text=text_wo_eos, - eos_token=eos_token, - eos_token_id=eos_token_id, - ) - new_char_count = len(eos_token) - - # Note that `stop` and `stop_token_ids` are not specified - sampling_params = SamplingParams( - min_tokens=1, - ignore_eos=ignore_eos, - include_stop_str_in_output=include_stop_str_in_output) - - stop_checker.maybe_stop_sequence( - seq=seq, - new_char_count=new_char_count, - sampling_params=sampling_params, - ) - - if ignore_eos: - assert seq.status == SequenceStatus.RUNNING - assert seq.output_text == text_wo_eos + eos_token - elif include_stop_str_in_output: - assert seq.status == SequenceStatus.FINISHED_STOPPED - assert seq.output_text == text_wo_eos + eos_token - else: - assert seq.status == SequenceStatus.FINISHED_STOPPED - assert seq.output_text == text_wo_eos diff --git a/tests/entrypoints/openai/correctness/test_lmeval.py b/tests/entrypoints/openai/correctness/test_lmeval.py index 684407cd6ee9..624acd5ffde7 100644 --- a/tests/entrypoints/openai/correctness/test_lmeval.py +++ b/tests/entrypoints/openai/correctness/test_lmeval.py @@ -81,13 +81,3 @@ def test_lm_eval_accuracy_v1_engine(monkeypatch: pytest.MonkeyPatch): more_args = ["--max-num-seqs", "64"] run_test(more_args) - - -@pytest.mark.parametrize("more_args", MORE_ARGS_LIST) -def test_lm_eval_accuracy_v0_engine(monkeypatch: pytest.MonkeyPatch, - more_args): - """Run with the V0 Engine.""" - - with monkeypatch.context() as m: - m.setenv("VLLM_USE_V1", "0") - run_test(more_args) diff --git a/tests/samplers/test_logprobs.py b/tests/samplers/test_logprobs.py deleted file mode 100644 index 87f40b100531..000000000000 --- a/tests/samplers/test_logprobs.py +++ /dev/null @@ -1,182 +0,0 @@ -# SPDX-License-Identifier: Apache-2.0 -# SPDX-FileCopyrightText: Copyright contributors to the vLLM project - -import pytest -import torch - -from vllm import SamplingParams - -from ..conftest import VllmRunner - -MODELS = ["distilbert/distilgpt2"] - - -@pytest.fixture(scope="function", autouse=True) -def use_v0_only(monkeypatch): - """ - This module is V0 only since it uses dtype=float, so - set VLLM_USE_V1=0 for all tests in the module. - """ - monkeypatch.setenv('VLLM_USE_V1', '0') - - -@pytest.mark.parametrize("model", MODELS) -@pytest.mark.parametrize("dtype", - ["float"]) # needed for comparing logprobs with HF -@pytest.mark.parametrize("chunked_prefill_token_size", [1, 4, 16, -1]) -@pytest.mark.parametrize("num_top_logprobs", [0, 6]) # 32000 == vocab_size -@pytest.mark.parametrize("detokenize", [True, False]) -def test_get_prompt_logprobs( - hf_runner, - vllm_runner, - model, - dtype, - chunked_prefill_token_size: int, - num_top_logprobs: int, - detokenize: bool, - example_prompts, -): - max_num_seqs = 256 - enable_chunked_prefill = False - max_num_batched_tokens = None - if chunked_prefill_token_size != -1: - enable_chunked_prefill = True - max_num_seqs = min(chunked_prefill_token_size, max_num_seqs) - max_num_batched_tokens = chunked_prefill_token_size - - max_tokens = 5 - with hf_runner(model, dtype=dtype) as hf_model: - hf_logprobs = hf_model.generate_greedy_logprobs( - example_prompts, - max_tokens=max_tokens, - ) - - with vllm_runner( - model, - dtype=dtype, - max_logprobs=num_top_logprobs, - enable_chunked_prefill=enable_chunked_prefill, - max_num_batched_tokens=max_num_batched_tokens, - max_num_seqs=max_num_seqs, - ) as vllm_model: - vllm_sampling_params = SamplingParams(max_tokens=max_tokens, - logprobs=num_top_logprobs, - prompt_logprobs=num_top_logprobs, - temperature=0.0, - detokenize=detokenize) - vllm_results = vllm_model.llm.generate( - example_prompts, sampling_params=vllm_sampling_params) - - # Test whether logprobs are included in the results. - for result in vllm_results: - assert result.prompt_logprobs is not None - assert result.outputs[0].logprobs is not None - assert len(result.outputs[0].logprobs) == max_tokens - for logprobs in result.outputs[0].logprobs: - # If the output token is not included in the top X - # logprob, it can return 1 more data - assert (len(logprobs) == num_top_logprobs - or len(logprobs) == num_top_logprobs + 1) - output_text = result.outputs[0].text - output_string_from_most_likely_tokens_lst: list[str] = [] - for top_logprobs in result.outputs[0].logprobs: - top_logprob = next(iter(top_logprobs.values())) - output_string_from_most_likely_tokens_lst.append( - top_logprob.decoded_token) - - if detokenize: - output_string_from_most_likely_tokens = "".join( - output_string_from_most_likely_tokens_lst) - assert output_text == output_string_from_most_likely_tokens, ( - "The output text from the top logprob for each token position " - "should be the same as the output text in the result.") - else: - assert output_text == '' - assert output_string_from_most_likely_tokens_lst == ([None] * - max_tokens) - - # The first prompt logprob is always None - assert result.prompt_logprobs[0] is None - for prompt_logprobs in result.prompt_logprobs[1:]: - # If the prompt token is not included in the top X - # logprob, it can return 1 more data - assert (len(prompt_logprobs) == num_top_logprobs - or len(prompt_logprobs) == num_top_logprobs + 1) - - # Test whether prompt logprobs are consistent with HF - for vllm_result, hf_logprob in zip(vllm_results, hf_logprobs): - # Check prompt logprobs - # The first prompt logprob is always None, so we compare it from 1:. - vllm_prompt_logprobs = vllm_result.prompt_logprobs[1:] - for i, vllm_prompt_logprob_dict in enumerate(vllm_prompt_logprobs): - for token_id, logprob in vllm_prompt_logprob_dict.items(): - torch.testing.assert_close(logprob.logprob, - hf_logprob[0][i][token_id].item(), - atol=1e-2, - rtol=1e-2) - vllm_sample_logprobs = vllm_result.outputs[0].logprobs - for i, top_logprobs in enumerate(vllm_sample_logprobs): - for token_id, sample_logprob in top_logprobs.items(): - logprob = sample_logprob.logprob - torch.testing.assert_close(logprob, - hf_logprob[i][-1][token_id].item(), - atol=1e-2, - rtol=1e-2) - if detokenize: - assert isinstance(sample_logprob.decoded_token, str), ( - "The token should be decoded by the time it is returned" - " to the user.") - - # Test if prompt logprobs are correctly set. - for vllm_result in vllm_results: - token_ids = vllm_result.prompt_token_ids - prompt_logprobs = vllm_result.prompt_logprobs - - # The first token doesn't have logprob. - assert prompt_logprobs[0] is None - - for token_id, logprob_dict in zip(token_ids[1:], prompt_logprobs[1:]): - assert token_id in logprob_dict - - -def test_max_logprobs(): - runner = VllmRunner("facebook/opt-125m", max_logprobs=1) - vllm_sampling_params = SamplingParams(logprobs=1) - # should pass - runner.generate(["Hello world"], sampling_params=vllm_sampling_params) - - bad_sampling_params = SamplingParams(logprobs=2) - with pytest.raises(ValueError): - runner.generate(["Hello world"], sampling_params=bad_sampling_params) - - -@pytest.mark.parametrize("model", MODELS) -@pytest.mark.parametrize("chunked_prefill_token_size", [1, 4, 16, -1]) -@pytest.mark.parametrize("detokenize", [True, False]) -def test_none_logprobs(vllm_runner, model, chunked_prefill_token_size: int, - detokenize: bool, example_prompts): - max_num_seqs = 256 - enable_chunked_prefill = False - max_num_batched_tokens = None - if chunked_prefill_token_size != -1: - enable_chunked_prefill = True - max_num_seqs = min(chunked_prefill_token_size, max_num_seqs) - max_num_batched_tokens = chunked_prefill_token_size - max_tokens = 5 - - with vllm_runner( - model, - enable_chunked_prefill=enable_chunked_prefill, - max_num_batched_tokens=max_num_batched_tokens, - max_num_seqs=max_num_seqs, - ) as vllm_model: - sampling_params_logprobs_none = SamplingParams(max_tokens=max_tokens, - logprobs=None, - temperature=0.0, - detokenize=detokenize) - results_logprobs_none = vllm_model.llm.generate( - example_prompts, sampling_params=sampling_params_logprobs_none) - - for i in range(len(results_logprobs_none)): - assert results_logprobs_none[i].outputs[0].logprobs is None - assert results_logprobs_none[i].outputs[0].cumulative_logprob is None diff --git a/tests/worker/__init__.py b/tests/worker/__init__.py deleted file mode 100644 index e69de29bb2d1..000000000000 diff --git a/tests/worker/conftest.py b/tests/worker/conftest.py deleted file mode 100644 index 3f202d4dbe94..000000000000 --- a/tests/worker/conftest.py +++ /dev/null @@ -1,11 +0,0 @@ -# SPDX-License-Identifier: Apache-2.0 -# SPDX-FileCopyrightText: Copyright contributors to the vLLM project -import pytest - - -@pytest.fixture(scope="function", autouse=True) -def use_v0_only(monkeypatch): - """ - This module tests V0 internals, so set VLLM_USE_V1=0. - """ - monkeypatch.setenv('VLLM_USE_V1', '0') \ No newline at end of file diff --git a/tests/worker/test_model_input.py b/tests/worker/test_model_input.py deleted file mode 100644 index 0f28ef2ba857..000000000000 --- a/tests/worker/test_model_input.py +++ /dev/null @@ -1,113 +0,0 @@ -# SPDX-License-Identifier: Apache-2.0 -# SPDX-FileCopyrightText: Copyright contributors to the vLLM project - -import dataclasses - -import torch - -from vllm.attention import AttentionMetadata, AttentionMetadataBuilder -from vllm.attention.backends.abstract import AttentionBackend -from vllm.attention.backends.utils import CommonAttentionState -from vllm.model_executor import SamplingMetadata -from vllm.worker.model_runner import ModelInputForGPUWithSamplingMetadata - - -class MockAttentionBackend(AttentionBackend): - - @staticmethod - def get_name() -> str: - raise NotImplementedError - - @staticmethod - def get_impl_cls(): - raise NotImplementedError - - @staticmethod - def get_metadata_cls() -> type["AttentionMetadata"]: - return AttentionMetadata - - @staticmethod - def get_builder_cls() -> type["AttentionMetadataBuilder"]: - return AttentionMetadataBuilder - - @staticmethod - def get_state_cls() -> type["CommonAttentionState"]: - return CommonAttentionState - - @staticmethod - def get_kv_cache_shape( - num_blocks: int, - block_size: int, - num_kv_heads: int, - head_size: int, - ) -> tuple[int, ...]: - raise NotImplementedError - - @staticmethod - def swap_blocks( - src_kv_cache: torch.Tensor, - dst_kv_cache: torch.Tensor, - src_to_dst: torch.Tensor, - ) -> None: - pass - - @staticmethod - def copy_blocks( - kv_caches: list[torch.Tensor], - src_to_dists: torch.Tensor, - ) -> None: - pass - - -def test_model_runner_input(): - sampling_metadata = SamplingMetadata( - ["seq_group"], - "selected_token_indices", - "categorized_sample_indices", - "num_prompts", - ) - attn_metadata = AttentionMetadata( - num_prefills=1, - num_prefill_tokens=2, - num_decode_tokens=3, - slot_mapping=torch.zeros(1), - multi_modal_placeholder_index_maps=None, - enable_kv_scales_calculation=True, - ) - model_input = ModelInputForGPUWithSamplingMetadata( - input_tokens=torch.ones(10), - input_positions=torch.ones(10), - sampling_metadata=sampling_metadata, - attn_metadata=attn_metadata) - - assert isinstance(model_input, ModelInputForGPUWithSamplingMetadata) - - # Test round trip serialization. - tensor_dict = model_input.as_broadcastable_tensor_dict() - attn_backend = MockAttentionBackend() - received_model_input = ( - ModelInputForGPUWithSamplingMetadata.from_broadcasted_tensor_dict( - tensor_dict, attn_backend=attn_backend)) - # Check that received copy has correct values. - assert isinstance(received_model_input, - ModelInputForGPUWithSamplingMetadata) - assert received_model_input.input_tokens is not None - assert ( - received_model_input.input_tokens == model_input.input_tokens).all() - assert received_model_input.input_positions is not None - assert (received_model_input.input_positions == model_input.input_positions - ).all() - assert received_model_input.multi_modal_kwargs is None - assert (received_model_input.multi_modal_kwargs == - model_input.multi_modal_kwargs) - assert received_model_input.lora_requests is None - assert received_model_input.lora_requests == model_input.lora_requests - assert received_model_input.lora_mapping is None - assert received_model_input.lora_mapping == model_input.lora_mapping - for field in dataclasses.fields(AttentionMetadata): - assert getattr(received_model_input.attn_metadata, field.name, - None) == getattr(attn_metadata, field.name, None) - # For sampling metadata, only selected_token_indices is copied. - assert (received_model_input.sampling_metadata.selected_token_indices == - sampling_metadata.selected_token_indices) - assert received_model_input.sampling_metadata.seq_groups is None diff --git a/tests/worker/test_model_runner.py b/tests/worker/test_model_runner.py deleted file mode 100644 index 0be25aa2fc35..000000000000 --- a/tests/worker/test_model_runner.py +++ /dev/null @@ -1,462 +0,0 @@ -# SPDX-License-Identifier: Apache-2.0 -# SPDX-FileCopyrightText: Copyright contributors to the vLLM project - -import pytest -import torch - -from vllm.distributed.parallel_state import (ensure_model_parallel_initialized, - init_distributed_environment) -from vllm.engine.arg_utils import EngineArgs -from vllm.model_executor.sampling_metadata import SamplingMetadata -from vllm.sequence import SamplingParams, SequenceData, SequenceGroupMetadata -from vllm.utils import get_open_port -from vllm.worker.model_runner import ModelRunner - - -def _create_model_runner(model: str, *args, **kwargs) -> ModelRunner: - engine_args = EngineArgs(model, *args, **kwargs) - engine_config = engine_args.create_engine_config() - model_runner = ModelRunner( - vllm_config=engine_config, - is_driver_worker=True, - ) - return model_runner - - -def test_deepseek_mla_attn_backend_module(): - model_runner = _create_model_runner( - "deepseek-ai/DeepSeek-Coder-V2-Lite-Instruct", - trust_remote_code=True, - enable_chunked_prefill=False, - ) - assert model_runner.attn_backend.__name__ == "TritonMLABackend" - - -@pytest.mark.parametrize("batch_size", list(range(1, 257, 3))) -@pytest.mark.parametrize("use_prompt_embeds", [True, False]) -def test_prepare_prompt(batch_size, use_prompt_embeds, monkeypatch): - if use_prompt_embeds: - # Prompt Embeddings is only currently supported on V0 - monkeypatch.setenv("VLLM_USE_V1", "0") - - model_runner = _create_model_runner( - "facebook/opt-125m", - max_num_batched_tokens=100000, - max_num_seqs=100000, - enable_chunked_prefill=False, - enable_prompt_embeds=True, - ) - - seq_lens: list[int] = [] - seq_group_metadata_list: list[SequenceGroupMetadata] = [] - block_tables = {0: [1]} - expected_input_embeds_len = 0 - for i in range(batch_size): - # make sure all tokens fit into one block - seq_len = i % (model_runner.block_size - 1) + 1 - seq_lens.append(seq_len) - if use_prompt_embeds: - seq_data = SequenceData.from_seqs( - prompt_token_ids=[0] * seq_len, - prompt_embeds=torch.rand(seq_len, 10), - ) - expected_input_embeds_len += seq_len - else: - seq_data = SequenceData.from_seqs(prompt_token_ids=range(seq_len)) - - seq_group_metadata = SequenceGroupMetadata( - request_id=f"test_{i}", - is_prompt=True, - seq_data={0: seq_data}, - sampling_params=SamplingParams(temperature=0), - block_tables=block_tables, - ) - assert seq_group_metadata.token_chunk_size == seq_data.get_len() - seq_group_metadata_list.append(seq_group_metadata) - - expected_selected_token_indices = [] - selected_token_start_idx = 0 - for seq_len in seq_lens: - expected_selected_token_indices.append(selected_token_start_idx + - seq_len - 1) - selected_token_start_idx += seq_len - model_input = model_runner._prepare_model_input_tensors( - seq_group_metadata_list) - input_tokens = model_input.input_tokens - input_positions = model_input.input_positions - input_embeds = model_input.inputs_embeds - attn_metadata = model_input.attn_metadata - return_seq_lens = model_input.seq_lens - slot_mapping = attn_metadata.slot_mapping - assert return_seq_lens == seq_lens - assert len(slot_mapping) == len(input_tokens) - - # Verify input metadata is correct for prompts. - device = model_runner.device - assert attn_metadata.num_prefills > 0 - assert attn_metadata.num_decode_tokens == 0 - torch.testing.assert_close( - attn_metadata.seq_lens_tensor, - torch.tensor(seq_lens, device=device, dtype=torch.int)) - assert attn_metadata.seq_lens == seq_lens - assert attn_metadata.max_prefill_seq_len == max(seq_lens) - assert attn_metadata.max_decode_seq_len == 0 - - # Test subquery start locs. - start_idx = 0 - start_loc = [start_idx] - for seq_len in seq_lens: - start_idx += seq_len - start_loc.append(start_idx) - torch.testing.assert_close( - attn_metadata.query_start_loc, - torch.tensor(start_loc, dtype=torch.int32, device=device)) - - # Test seq start locs. Note that for normal prefill it is - # equivalent to query_start_loc. - start_idx = 0 - seq_start_loc = [start_idx] - for seq_len in seq_lens: - start_idx += seq_len - seq_start_loc.append(start_idx) - - torch.testing.assert_close( - attn_metadata.seq_start_loc, - torch.tensor(start_loc, dtype=torch.int32, device=device)) - torch.testing.assert_close( - attn_metadata.context_lens_tensor, - torch.zeros(attn_metadata.context_lens_tensor.shape[0], - dtype=torch.int, - device=device)) - - expected = torch.tensor([[] for _ in range(len(seq_group_metadata_list))], - dtype=torch.int32, - device=model_runner.device) - torch.testing.assert_close(attn_metadata.block_tables, expected) - # Cuda graph should not be used for prerill. - assert attn_metadata.use_cuda_graph is False - - assert len(input_tokens) == sum(seq_lens) - assert len(input_positions) == sum(seq_lens) - if expected_input_embeds_len == 0: - torch.testing.assert_close(input_tokens, input_positions) - assert input_embeds is None - else: - assert len(input_embeds) == expected_input_embeds_len - - sampling_metadata = SamplingMetadata.prepare( - seq_group_metadata_list, - seq_lens, - query_lens=seq_lens, - device=model_runner.device, - pin_memory=model_runner.pin_memory) - assert len(input_tokens) == sum(seq_lens) - assert len(input_positions) == sum(seq_lens) - actual = sampling_metadata.selected_token_indices - expected = torch.tensor(expected_selected_token_indices, - device=actual.device, - dtype=actual.dtype) - torch.testing.assert_close(actual, expected) - torch.allclose(input_tokens, input_positions) - - actual = sampling_metadata.selected_token_indices - expected = torch.tensor(expected_selected_token_indices, - device=actual.device, - dtype=actual.dtype) - torch.testing.assert_close(actual, expected) - - -@pytest.mark.parametrize("batch_size", list(range(1, 257, 3))) -@pytest.mark.parametrize("use_prompt_embeds", [True, False]) -def test_prepare_decode_cuda_graph(batch_size, use_prompt_embeds, monkeypatch): - if use_prompt_embeds: - # Prompt Embeddings is only currently supported on V0 - monkeypatch.setenv("VLLM_USE_V1", "0") - - model_runner = _create_model_runner( - "facebook/opt-125m", - seed=0, - dtype="float16", - enforce_eager=False, - max_num_batched_tokens=100000, - max_num_seqs=100000, - enable_chunked_prefill=False, - enable_prompt_embeds=True, - ) - - context_lens: list[int] = [] - seq_group_metadata_list: list[SequenceGroupMetadata] = [] - # Assume each seq group finishes prefill. - for i in range(batch_size): - # make sure all tokens fit into one block - context_len = i % (model_runner.block_size - 1) + 1 - context_lens.append(context_len) - if use_prompt_embeds: - seq_data = SequenceData.from_seqs( - prompt_token_ids=[0] * context_len, - prompt_embeds=torch.rand(context_len, 10), - ) - output_embed = torch.rand(10) - else: - seq_data = SequenceData.from_seqs( - prompt_token_ids=range(context_len)) - output_embed = None - seq_data.update_num_computed_tokens(context_len) - # Append one token ID since prefill is finished. - seq_data.append_token_id(1, 0, output_embed) - seq_group_metadata = SequenceGroupMetadata( - request_id=f"test_{i}", - is_prompt=False, - seq_data={0: seq_data}, - sampling_params=SamplingParams(temperature=0), - block_tables={0: [1]}, - ) - assert seq_group_metadata.token_chunk_size == 1 - seq_group_metadata_list.append(seq_group_metadata) - - model_input = model_runner._prepare_model_input_tensors( - seq_group_metadata_list) - input_tokens = model_input.input_tokens - input_positions = model_input.input_positions - input_embeds = model_input.inputs_embeds - attn_metadata = model_input.attn_metadata - slot_mapping = attn_metadata.slot_mapping - - assert len(slot_mapping) == len(input_tokens) - - expected_bs = model_runner.vllm_config.pad_for_cudagraph( - len(seq_group_metadata_list)) - # Verify input metadata is correct for prompts. - device = model_runner.device - assert attn_metadata.num_prefills == 0 - assert attn_metadata.num_prefill_tokens == 0 - seq_lens = [context_len + 1 for context_len in context_lens] - # seq_lens are padded to expected_bs - for _ in range(expected_bs - len(seq_lens)): - seq_lens.append(1) - assert attn_metadata.seq_lens == seq_lens - assert attn_metadata.num_decode_tokens == len(seq_lens) - start_idx = 0 - start_loc = [start_idx] - for _ in context_lens: - # decode has only 1 token for query. - start_idx += 1 - start_loc.append(start_idx) - torch.testing.assert_close( - attn_metadata.query_start_loc, - torch.tensor(start_loc, dtype=torch.int32, device=device)) - - start_idx = 0 - seq_start_loc = [start_idx] - for seq_len in seq_lens: - start_idx += seq_len - seq_start_loc.append(start_idx) - torch.testing.assert_close( - attn_metadata.seq_start_loc, - torch.tensor(seq_start_loc, dtype=torch.int32, device=device)) - - torch.testing.assert_close( - attn_metadata.context_lens_tensor, - torch.tensor(context_lens, dtype=torch.int, device=device)) - assert attn_metadata.max_decode_seq_len == max(seq_lens) - torch.testing.assert_close( - attn_metadata.seq_lens_tensor[:len(seq_lens)], - torch.tensor(seq_lens, dtype=torch.int, device=device)) - - # block table's first index corresponds to each batch, meaning in - # decoding it is each token. - assert attn_metadata.block_tables.shape[0] == len(input_tokens) - # Block table's second dim corresponds to each token's block number. - # It is padded up to - assert attn_metadata.block_tables.shape[1] == ( - model_runner.get_max_block_per_batch()) - assert attn_metadata.use_cuda_graph is True - - assert len(input_tokens) == expected_bs - assert len(input_positions) == expected_bs - if use_prompt_embeds: - expected_input_embeds_length = start_loc[-1] - assert len(input_embeds) == expected_input_embeds_length - assert expected_input_embeds_length <= expected_bs - else: - assert input_embeds is None - - # Verify Sampling - expected_selected_token_indices = [] - for selected_token_start_idx, _ in enumerate(context_lens): - expected_selected_token_indices.append(selected_token_start_idx) - sampling_metadata = SamplingMetadata.prepare( - seq_group_metadata_list, - seq_lens, - # query lens is all 1 for decode. - query_lens=[1 for _ in range(len(context_lens))], - device=model_runner.device, - pin_memory=model_runner.pin_memory) - actual = sampling_metadata.selected_token_indices - expected = torch.tensor(expected_selected_token_indices, - device=actual.device, - dtype=actual.dtype) - torch.testing.assert_close(actual, expected) - - -def test_empty_seq_group(): - """Verify prepare prompt and decode returns empty output.""" - model_runner = _create_model_runner( - "facebook/opt-125m", - seed=0, - dtype="float16", - enforce_eager=False, - ) - seq_group_metadata_list: list[SequenceGroupMetadata] = [] - model_input = model_runner._prepare_model_input_tensors( - seq_group_metadata_list) - - input_tokens = model_input.input_tokens - input_positions = model_input.input_positions - attn_metadata = model_input.attn_metadata - - assert input_tokens is None - assert input_positions is None - assert attn_metadata is None - - model_input = model_runner._prepare_model_input_tensors( - seq_group_metadata_list) - - input_tokens = model_input.input_tokens - input_positions = model_input.input_positions - input_embeds = model_input.inputs_embeds - attn_metadata = model_input.attn_metadata - return_seq_lens = model_input.seq_lens - - assert input_tokens is None - assert input_positions is None - assert input_embeds is None - assert attn_metadata is None - assert return_seq_lens is None - - -@pytest.fixture -def distributed_init(): - init_distributed_environment( - world_size=1, - rank=0, - distributed_init_method=f"tcp://127.0.0.1:{get_open_port()}", - local_rank=0) - ensure_model_parallel_initialized(1, 1) - - -@pytest.mark.parametrize("batch_size", list(range(2, 128, 3))) -@pytest.mark.parametrize("enforce_eager", [True, False]) -@pytest.mark.parametrize('use_prompt_embeds', [True, False]) -def test_hybrid_batches(batch_size, enforce_eager, use_prompt_embeds, - distributed_init, monkeypatch): - if use_prompt_embeds: - # Prompt Embeddings is only currently supported on V0 - monkeypatch.setenv("VLLM_USE_V1", "0") - - model_runner = _create_model_runner( - "facebook/opt-125m", - seed=0, - dtype="float16", - enforce_eager=enforce_eager, - max_num_batched_tokens=100000, - max_num_seqs=100000, - enable_chunked_prefill=True, - enable_prompt_embeds=True, - ) - - # Add prefill requests. - seq_lens: list[int] = [] - seq_group_metadata_list: list[SequenceGroupMetadata] = [] - prefill_metadata_list: list[SequenceGroupMetadata] = [] - decode_metadata_list: list[SequenceGroupMetadata] = [] - block_tables = {0: [1]} - prefill_batch_size = batch_size // 2 - decode_batch_size = batch_size - prefill_batch_size - expected_input_embeds_len = 0 - for i in range(prefill_batch_size): - # make sure all tokens fit into one block - seq_len = i % (model_runner.block_size - 1) + 1 - seq_lens.append(seq_len) - if use_prompt_embeds: - seq_data = SequenceData.from_seqs( - prompt_token_ids=[0] * seq_len, - prompt_embeds=torch.rand(seq_len, 10), - ) - expected_input_embeds_len += seq_len - else: - seq_data = SequenceData.from_seqs( - prompt_token_ids=range(seq_len), ) - seq_group_metadata = SequenceGroupMetadata( - request_id=f"test_{i}", - is_prompt=True, - seq_data={0: seq_data}, - sampling_params=SamplingParams(temperature=0), - block_tables=block_tables, - ) - assert seq_group_metadata.token_chunk_size == seq_data.get_len() - seq_group_metadata_list.append(seq_group_metadata) - prefill_metadata_list.append(seq_group_metadata) - - # Add decode requests - for i in range(prefill_batch_size, batch_size): - # make sure all tokens fit into one block - context_len = i % (model_runner.block_size - 1) + 1 - if use_prompt_embeds: - seq_data = SequenceData.from_seqs( - prompt_token_ids=[0] * context_len, - prompt_embeds=torch.rand(context_len, 10), - ) - output_embed = torch.rand(10) - # This also iterates the expected input_embeds, because the model - # needs both the input and output embeddings passed into together - expected_input_embeds_len += 1 - else: - seq_data = SequenceData.from_seqs( - prompt_token_ids=range(context_len), ) - output_embed = None - assert len(seq_data.prompt_token_ids) == context_len - seq_data.append_token_id(1, 0, output_embed) - seq_data.update_num_computed_tokens(context_len) - seq_group_metadata = SequenceGroupMetadata( - request_id=f"test_{i}", - is_prompt=False, - seq_data={0: seq_data}, - sampling_params=SamplingParams(temperature=0), - block_tables={0: [1]}, - ) - assert seq_group_metadata.token_chunk_size == 1 - seq_group_metadata_list.append(seq_group_metadata) - decode_metadata_list.append(seq_group_metadata) - - model_input = model_runner.prepare_model_input(seq_group_metadata_list) - - input_tokens = model_input.input_tokens - input_positions = model_input.input_positions - input_embeds = model_input.inputs_embeds - attn_metadata = model_input.attn_metadata - - prefill_meta_actual = attn_metadata.prefill_metadata - decode_meta_actual = attn_metadata.decode_metadata - - assert len(attn_metadata.slot_mapping) == len(input_tokens) - assert len(input_positions) == len(input_tokens) - assert attn_metadata.num_prefills == prefill_batch_size - assert attn_metadata.num_decode_tokens == decode_batch_size - assert attn_metadata.num_prefill_tokens == sum(seq_lens) - if expected_input_embeds_len == 0: - assert input_embeds is None - else: - assert len(input_embeds) == expected_input_embeds_len - - # Verify attn metadata is consistent. We don't need to test individual - # values here because they are tested above. - attn_metadata = model_runner._prepare_model_input_tensors( - seq_group_metadata_list).attn_metadata - - for attr_expected, attr_actual in zip(vars(attn_metadata.prefill_metadata), - vars(prefill_meta_actual)): - assert attr_expected[1] == attr_actual[1] - for attr_expected, attr_actual in zip(vars(attn_metadata.decode_metadata), - vars(decode_meta_actual)): - assert attr_expected[1] == attr_actual[1] diff --git a/tests/worker/test_profile.py b/tests/worker/test_profile.py deleted file mode 100644 index d8767f700b57..000000000000 --- a/tests/worker/test_profile.py +++ /dev/null @@ -1,68 +0,0 @@ -# SPDX-License-Identifier: Apache-2.0 -# SPDX-FileCopyrightText: Copyright contributors to the vLLM project - -import torch - -from vllm.engine.arg_utils import EngineArgs -from vllm.utils import get_distributed_init_method, get_ip, get_open_port -from vllm.worker.cache_engine import CacheEngine -from vllm.worker.worker import Worker - - -def test_gpu_memory_profiling(): - # Tests the gpu profiling that happens in order to determine the number of - # KV cache blocks that we can allocate on the GPU. - # This test mocks the maximum available gpu memory so that it can run on - # any gpu setup. - - # Set up engine args to build a worker. - engine_args = EngineArgs(model="facebook/opt-125m", - dtype="half", - load_format="dummy") - engine_config = engine_args.create_engine_config() - engine_config.cache_config.num_gpu_blocks = 1000 - engine_config.cache_config.num_cpu_blocks = 1000 - - # Create the worker. - distributed_init_method = get_distributed_init_method( - get_ip(), get_open_port()) - worker = Worker( - vllm_config=engine_config, - local_rank=0, - rank=0, - distributed_init_method=distributed_init_method, - is_driver_worker=True, - ) - - # Set 10GiB as the total gpu ram to be device-agnostic - def mock_mem_info(): - current_usage = torch.cuda.memory_stats( - )["allocated_bytes.all.current"] - mock_total_bytes = 10 * 1024**3 - free = mock_total_bytes - current_usage - - return (free, mock_total_bytes) - - from unittest.mock import patch - with patch("torch.cuda.mem_get_info", side_effect=mock_mem_info): - # Load the model so we can profile it - worker.init_device() - worker.load_model() - gpu_blocks, _ = worker.determine_num_available_blocks() - - # Peak vram usage by torch should be 0.47 GiB - # Model weights take 0.25 GiB - # No memory should be allocated outside of torch - # 9.0 GiB should be the utilization target - # 8.28 GiB should be available for the KV cache - block_size = CacheEngine.get_cache_block_size( - engine_config.cache_config, engine_config.model_config, - engine_config.parallel_config) - - expected_blocks = (8.28 * 1024**3) // block_size - - # Check within a small tolerance for portability - # Hardware, kernel, or dependency changes could all affect memory - # utilization. - # A 100 block tolerance here should be about 60MB of wiggle room. - assert abs(gpu_blocks - expected_blocks) < 100 diff --git a/tests/worker/test_swap.py b/tests/worker/test_swap.py deleted file mode 100644 index 6d9f404ac207..000000000000 --- a/tests/worker/test_swap.py +++ /dev/null @@ -1,87 +0,0 @@ -# SPDX-License-Identifier: Apache-2.0 -# SPDX-FileCopyrightText: Copyright contributors to the vLLM project - -import torch - -from vllm.engine.arg_utils import EngineArgs -from vllm.sequence import ExecuteModelRequest -from vllm.utils import get_distributed_init_method, get_ip, get_open_port -from vllm.worker.worker import Worker - - -def test_swap() -> None: - # Configure the engine. - engine_args = EngineArgs(model="distilbert/distilgpt2", - dtype="half", - load_format="dummy") - engine_config = engine_args.create_engine_config() - engine_config.cache_config.num_gpu_blocks = 1000 - engine_config.cache_config.num_cpu_blocks = 1000 - - # Create the worker. - distributed_init_method = get_distributed_init_method( - get_ip(), get_open_port()) - worker = Worker( - vllm_config=engine_config, - local_rank=0, - rank=0, - distributed_init_method=distributed_init_method, - is_driver_worker=True, - ) - - # Initialize the worker. - worker.init_device() - worker.load_model() - worker.initialize_cache( - num_gpu_blocks=engine_config.cache_config.num_gpu_blocks, - num_cpu_blocks=engine_config.cache_config.num_cpu_blocks) - - # Randomly initialize the cache. - gpu_cache = worker.cache_engine[0].gpu_cache - cpu_cache = worker.cache_engine[0].cpu_cache - num_layers = len(gpu_cache) - for i in range(num_layers): - gpu_key_cache, gpu_value_cache = gpu_cache[i] - gpu_key_cache.random_() - gpu_value_cache.random_() - cpu_key_cache, cpu_value_cache = cpu_cache[i] - cpu_key_cache.random_() - cpu_value_cache.random_() - - allclose = lambda a, b: torch.allclose( - a.cuda(), b.cuda(), rtol=0.0, atol=0.0) - - # Test swap out. - blocks_to_swap_out = [(3, 72), (56, 35), (84, 34)] - execute_model_req = ExecuteModelRequest( - seq_group_metadata_list=[], - blocks_to_swap_in=[], - blocks_to_swap_out=blocks_to_swap_out, - blocks_to_copy=[], - ) - worker.execute_model(execute_model_req=execute_model_req) - - for i in range(num_layers): - gpu_key_cache, gpu_value_cache = gpu_cache[i] - cpu_key_cache, cpu_value_cache = cpu_cache[i] - for src, dst in blocks_to_swap_out: - assert allclose(gpu_key_cache[src], cpu_key_cache[dst]) - assert allclose(gpu_value_cache[src], cpu_value_cache[dst]) - - # Test swap in. - execute_model_req.blocks_to_swap_out = [] - execute_model_req.blocks_to_swap_in = [ - (19, 45), - (67, 23), - (12, 78), - (40, 99), - (1, 71), - ] - worker.execute_model(execute_model_req=execute_model_req) - - for i in range(num_layers): - gpu_key_cache, gpu_value_cache = gpu_cache[i] - cpu_key_cache, cpu_value_cache = cpu_cache[i] - for src, dst in execute_model_req.blocks_to_swap_in: - assert allclose(gpu_key_cache[dst], cpu_key_cache[src]) - assert allclose(gpu_value_cache[dst], cpu_value_cache[src])