Skip to content
Merged
Show file tree
Hide file tree
Changes from 4 commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
190 changes: 174 additions & 16 deletions vllm/model_executor/layers/fused_moe/batched_deep_gemm_moe.py
Original file line number Diff line number Diff line change
Expand Up @@ -6,14 +6,183 @@

import vllm.model_executor.layers.fused_moe.modular_kernel as mk
from vllm.logger import init_logger
from vllm.model_executor.layers.fused_moe.utils import (
_resize_cache, per_token_group_quant_fp8)
from vllm.model_executor.layers.fused_moe.utils import _resize_cache
from vllm.triton_utils import tl, triton

logger = init_logger(__name__)

has_deep_gemm = importlib.util.find_spec("deep_gemm") is not None


@triton.jit
def _silu_mul_fp8_quant_deep_gemm(
# Pointers ------------------------------------------------------------
input_ptr, # *FP32 activations (E, T, 2*H)
y_q_ptr, # *FP8 quantised activations (E, T, H)
y_s_ptr, # *FP32 scales (E, T, G)
counts_ptr, # *INT32 number of tokens per expert (E)

# Sizes ---------------------------------------------------------------
E: tl.constexpr, # num_experts
T: tl.constexpr, # max_num_tokens
H: tl.constexpr, # hidden dimension (per output)
GROUP_SIZE: tl.constexpr, # elements per group (usually 128)

# Strides for input (elements) ---------------------------------------
stride_i_e,
stride_i_t,
stride_i_h,

# Strides for y_q (elements) -----------------------------------------
stride_yq_e,
stride_yq_t,
stride_yq_h,

# Strides for y_s (elements) -----------------------------------------
stride_ys_e,
stride_ys_t,
stride_ys_g,

# Stride for counts (elements)
stride_counts_e,

# Numeric params ------------------------------------------------------
eps: tl.constexpr,
fp8_min: tl.constexpr,
fp8_max: tl.constexpr,

# Meta ---------------------------------------------------------------
BLOCK: tl.constexpr,
):
G = H // GROUP_SIZE

# map program id -> (e, g)
pid = tl.program_id(0)
e = pid // G
g = pid % G

e = e.to(tl.int64)
g = g.to(tl.int64)

# number of valid tokens for this expert
n_tokens = tl.load(counts_ptr + e * stride_counts_e).to(tl.int64)

cols = tl.arange(0, BLOCK)
cols = cols.to(tl.int64)
mask_h = cols < BLOCK

t = tl.zeros([], tl.int64)
while t < n_tokens:
base_i_offset = (e * stride_i_e + t * stride_i_t +
g * GROUP_SIZE * stride_i_h)
base_yq_offset = (e * stride_yq_e + t * stride_yq_t +
g * GROUP_SIZE * stride_yq_h)
base_ys_offset = e * stride_ys_e + t * stride_ys_t + g * stride_ys_g

mask = mask_h
x = tl.load(input_ptr + base_i_offset + cols * stride_i_h,
mask=mask,
other=0.0).to(tl.float32)
y2 = tl.load(input_ptr + base_i_offset + H * stride_i_h +
cols * stride_i_h,
mask=mask,
other=0.0).to(tl.float32)

x = x * (1.0 / (1.0 + tl.exp(-x)))
y = x * y2

_absmax = tl.maximum(tl.max(tl.abs(y)), eps)
y_s = _absmax / fp8_max
y_q = tl.clamp(y / y_s, fp8_min, fp8_max).to(y_q_ptr.dtype.element_ty)

tl.store(y_q_ptr + base_yq_offset + cols * stride_yq_h, y_q, mask=mask)
tl.store(y_s_ptr + base_ys_offset, y_s)

t += 1


def silu_mul_fp8_quant_deep_gemm(
y: torch.Tensor, # (E, T, 2*H) float32
tokens_per_expert: torch.Tensor, # (E,) number of valid tokens per expert
group_size: int = 128,
eps: float = 1e-6,
):
"""Quantize silu(y[..., :H]) * y[..., H:] to FP8 with group per-token scales

y has shape (E, T, 2*H). The first half of the last dimension is
silu-activated, multiplied by the second half, then quantized into FP8.

Returns `(y_q, y_s)` where
* `y_q` is the FP8 tensor of shape `(E, T, H)`, same layout as `y[..., :H]`.
* `y_s` has shape `(E, T, H // group_size)` and strides `(T*G, 1, T)`
"""
assert y.ndim == 3, "y must be (E, T, 2*H)"
E, T, H2 = y.shape
assert H2 % 2 == 0, "last dim of y must be even (2*H)"
H = H2 // 2
G = H // group_size
assert H % group_size == 0, "H must be divisible by group_size"
assert tokens_per_expert.ndim == 1 and tokens_per_expert.shape[0] == E, \
"tokens_per_expert must be shape (E,)"
tokens_per_expert = tokens_per_expert.to(device=y.device,
dtype=torch.int32)

# allocate outputs
fp8_dtype = torch.float8_e4m3fn
y_q = torch.empty((E, T, H), dtype=fp8_dtype, device=y.device)

# strides (elements)
stride_i_e, stride_i_t, stride_i_h = y.stride()
stride_yq_e, stride_yq_t, stride_yq_h = y_q.stride()

# desired scale strides (elements): (T*G, 1, T)
stride_ys_e = T * G
stride_ys_t = 1
stride_ys_g = T
y_s = torch.empty_strided((E, T, G),
(stride_ys_e, stride_ys_t, stride_ys_g),
dtype=torch.float32,
device=y.device)

stride_cnt_e = tokens_per_expert.stride()[0]

# static grid over experts and H-groups.
# A loop inside the kernel handles the token dim
grid = (E * G, )

f_info = torch.finfo(fp8_dtype)
fp8_max = f_info.max
fp8_min = -f_info.max
Copy link
Member

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

nit: might as well use f_info.min


_silu_mul_fp8_quant_deep_gemm[grid](
y,
y_q,
y_s,
tokens_per_expert,
E,
T,
H,
group_size,
stride_i_e,
stride_i_t,
stride_i_h,
stride_yq_e,
stride_yq_t,
stride_yq_h,
stride_ys_e,
stride_ys_t,
stride_ys_g,
stride_cnt_e,
eps,
fp8_min,
fp8_max,
BLOCK=group_size,
num_warps=4,
)

return y_q, y_s


class BatchedDeepGemmExperts(mk.FusedMoEPermuteExpertsUnpermute):

# The Deep Gemm kernels only support block size of 128
Expand Down Expand Up @@ -96,7 +265,6 @@ def apply(
hidden_states, w1, w2, topk_ids)

workspace1 = _resize_cache(workspace13, (E, max_num_tokens, N))
workspace2 = _resize_cache(workspace2, (E, max_num_tokens, N // 2))

# (from deepgemm docs) : A value hint (which is a value on CPU)
# for the M expectation of each batch, correctly setting this value
Expand All @@ -109,19 +277,9 @@ def apply(
masked_m=expert_num_tokens,
expected_m=expected_m)

# TODO (varun) [Optimization]: Use a batched version of activation.
# Similarly for the quant below.
self.activation(activation, workspace2, workspace1.view(-1, N))

w2_hidden_size = workspace2.size(-1)
workspace2 = workspace2.view(-1, w2_hidden_size)

a2q_scale: Optional[torch.Tensor] = None
a2q, a2q_scale = per_token_group_quant_fp8(workspace2,
self.block_shape[1],
column_major_scales=False)
a2q = a2q.view(E, max_num_tokens, -1)
a2q_scale = a2q_scale.view(E, max_num_tokens, -1)
assert expert_num_tokens is not None
a2q, a2q_scale = silu_mul_fp8_quant_deep_gemm(workspace1,
expert_num_tokens)

dg.m_grouped_gemm_fp8_fp8_bf16_nt_masked((a2q, a2q_scale),
(w2, w2_scale),
Expand Down
11 changes: 9 additions & 2 deletions vllm/model_executor/layers/fused_moe/layer.py
Original file line number Diff line number Diff line change
Expand Up @@ -45,7 +45,8 @@
from .pplx_prepare_finalize import PplxPrepareAndFinalize
if has_deepep:
from .deepep_ht_prepare_finalize import DeepEPHTPrepareAndFinalize
from .deepep_ll_prepare_finalize import DeepEPLLPrepareAndFinalize
from .deepep_ll_prepare_finalize import (DEEPEP_QUANT_BLOCK_SIZE,
DeepEPLLPrepareAndFinalize)
else:
fused_experts = None # type: ignore
FusedMoEPermuteExpertsUnpermute = None # type: ignore
Expand Down Expand Up @@ -377,6 +378,12 @@
all2all_manager.world_size)
handle = all2all_manager.get_handle(all_to_all_args)

# Note : We may want to use FP8 dispatch even otherwise just to
# reduce datamovement
use_fp8_dispatch = (quant_dtype == current_platform.fp8_dtype()
and act_quant_block_size[1]

Check failure on line 384 in vllm/model_executor/layers/fused_moe/layer.py

View workflow job for this annotation

GitHub Actions / pre-commit

Value of type "list[int] | None" is not indexable [index]

Check failure on line 384 in vllm/model_executor/layers/fused_moe/layer.py

View workflow job for this annotation

GitHub Actions / pre-commit

Value of type "list[int] | None" is not indexable [index]

Check failure on line 384 in vllm/model_executor/layers/fused_moe/layer.py

View workflow job for this annotation

GitHub Actions / pre-commit

Value of type "list[int] | None" is not indexable [index]

Check failure on line 384 in vllm/model_executor/layers/fused_moe/layer.py

View workflow job for this annotation

GitHub Actions / pre-commit

Value of type "list[int] | None" is not indexable [index]

Check failure on line 384 in vllm/model_executor/layers/fused_moe/layer.py

View workflow job for this annotation

GitHub Actions / pre-commit

Value of type "list[int] | None" is not indexable [index]

Check failure on line 384 in vllm/model_executor/layers/fused_moe/layer.py

View workflow job for this annotation

GitHub Actions / pre-commit

Value of type "list[int] | None" is not indexable [index]

Check failure on line 384 in vllm/model_executor/layers/fused_moe/layer.py

View workflow job for this annotation

GitHub Actions / pre-commit

Value of type "Optional[list[int]]" is not indexable [index]

Check failure on line 384 in vllm/model_executor/layers/fused_moe/layer.py

View workflow job for this annotation

GitHub Actions / pre-commit

Value of type "Optional[list[int]]" is not indexable [index]

Check failure on line 384 in vllm/model_executor/layers/fused_moe/layer.py

View workflow job for this annotation

GitHub Actions / pre-commit

Value of type "Optional[list[int]]" is not indexable [index]

Check failure on line 384 in vllm/model_executor/layers/fused_moe/layer.py

View workflow job for this annotation

GitHub Actions / pre-commit

Value of type "Optional[list[int]]" is not indexable [index]
== DEEPEP_QUANT_BLOCK_SIZE)

# Note (varun): Whether to use FP8 dispatch or not needs some
# profiling. Turning it off for now.
prepare_finalize = DeepEPLLPrepareAndFinalize(
Expand All @@ -386,7 +393,7 @@
max_tokens_per_rank=moe.max_num_tokens,
quant_dtype=quant_dtype,
block_shape=act_quant_block_size,
use_fp8_dispatch=False,
use_fp8_dispatch=use_fp8_dispatch,
)

self.topk_indices_dtype = None
Expand Down