Skip to content

Commit ced4ab1

Browse files
committed
patch AscendQwen2_5_VisionAttention
Signed-off-by: shen-shanshan <[email protected]>
1 parent 4573c85 commit ced4ab1

File tree

3 files changed

+133
-217
lines changed

3 files changed

+133
-217
lines changed

vllm_ascend/models/qwen2_5_vl.py

Lines changed: 14 additions & 217 deletions
Original file line numberDiff line numberDiff line change
@@ -18,12 +18,11 @@
1818
# limitations under the License.
1919

2020
from functools import partial
21-
from typing import Callable, Iterable, Optional, Set, Tuple, Union
21+
from typing import Iterable, Optional, Set, Tuple, Union
2222

2323
import torch
2424
import torch.nn as nn
2525
import torch.nn.functional as F
26-
import torch_npu
2726
from einops import rearrange
2827
from transformers.models.qwen2_5_vl.configuration_qwen2_5_vl import (
2928
Qwen2_5_VLConfig, Qwen2_5_VLVisionConfig)
@@ -35,16 +34,15 @@
3534
from vllm.model_executor.layers.quantization import QuantizationConfig
3635
from vllm.model_executor.model_loader.weight_utils import default_weight_loader
3736
from vllm.model_executor.models.qwen2_5_vl import (
38-
Qwen2_5_VisionAttention, Qwen2_5_VisionBlock, Qwen2_5_VisionPatchEmbed,
37+
Qwen2_5_VisionBlock, Qwen2_5_VisionPatchEmbed,
3938
Qwen2_5_VisionRotaryEmbedding, Qwen2_5_VisionTransformer,
4039
Qwen2_5_VLDummyInputsBuilder, Qwen2_5_VLForConditionalGeneration,
4140
Qwen2_5_VLMultiModalProcessor, Qwen2_5_VLProcessingInfo)
4241
from vllm.model_executor.models.utils import maybe_prefix
4342
from vllm.multimodal import MULTIMODAL_REGISTRY
4443

4544
from vllm_ascend.ascend_forward_context import set_ascend_forward_context
46-
from vllm_ascend.utils import (ACL_FORMAT_FRACTAL_ND, is_enable_nz,
47-
vllm_version_is)
45+
from vllm_ascend.utils import vllm_version_is
4846

4947
if not vllm_version_is("0.11.0"):
5048
from vllm.model_executor.models.vision import conv3d_to_linear_weight
@@ -53,113 +51,19 @@
5351
MAX_PAD_SIZE = 128 # max_size to pad weight
5452

5553

56-
class AscendQwen2_5_VisionAttention(Qwen2_5_VisionAttention):
57-
58-
def __init__(
59-
self,
60-
embed_dim: int,
61-
num_heads: int,
62-
projection_size: int,
63-
quant_config: Optional[QuantizationConfig] = None,
64-
prefix: str = "",
65-
) -> None:
66-
super().__init__(
67-
embed_dim,
68-
num_heads,
69-
projection_size,
70-
quant_config,
71-
prefix,
72-
)
73-
self.embed_dim = embed_dim
74-
self.hidden_size_per_attention_head = dist_utils.divide(
75-
projection_size, num_heads)
76-
self.origin_hidden_size_per_attention_head = self.hidden_size_per_attention_head
77-
if self.hidden_size_per_attention_head > MIN_PAD_SIZE and self.hidden_size_per_attention_head < MAX_PAD_SIZE:
78-
self.hidden_size_per_attention_head = MAX_PAD_SIZE
79-
80-
def split_qkv(self, qkv: torch.Tensor) -> tuple[torch.Tensor, ...]:
81-
# [s, b, 3 * head * head_dim]
82-
seq_len, bs, _ = qkv.shape
83-
84-
# [s, b, 3 * head * head_dim] -> 3 * [s, b, head * head_dim]
85-
q, k, v = qkv.chunk(3, dim=2)
86-
87-
# 3 * [s, b, head * head_dim] -> 3 * [s, b, head, head_dim]
88-
new_shape = (seq_len, bs, self.num_attention_heads_per_partition,
89-
self.hidden_size_per_attention_head)
90-
q, k, v = (x.view(*new_shape) for x in (q, k, v))
91-
return q, k, v
54+
class AscendQwen2_5_VisionBlock(Qwen2_5_VisionBlock):
9255

9356
def forward(
9457
self,
9558
x: torch.Tensor,
9659
cu_seqlens: torch.Tensor,
97-
cos: torch.Tensor,
98-
sin: torch.Tensor,
60+
rotary_pos_emb_cos: torch.Tensor,
61+
rotary_pos_emb_sin: torch.Tensor,
9962
) -> torch.Tensor:
100-
# [s, b, c] --> [s, b, head * 3 * head_dim]
101-
x, _ = self.qkv(x)
102-
103-
# [s, b, 3 * head * head_dim] -> 3 * [s, b, head, head_dim]
104-
q, k, v = self.split_qkv(x)
105-
batch_size = q.shape[1]
106-
107-
q, k, v = (rearrange(x, "s b ... -> b s ...").contiguous()
108-
for x in (q, k, v))
109-
q = torch_npu.npu_rotary_mul(q, cos, sin)
110-
k = torch_npu.npu_rotary_mul(k, cos, sin)
111-
112-
q, k, v = [
113-
rearrange(x, "b s h d -> (b s) h d").contiguous()
114-
for x in (q, k, v)
115-
]
116-
117-
context_layer = torch.empty_like(q)
118-
119-
# operator requires pta version >= 2.5.1
120-
torch_npu._npu_flash_attention_unpad(
121-
query=q,
122-
key=k,
123-
value=v,
124-
seq_len=cu_seqlens,
125-
scale_value=self.origin_hidden_size_per_attention_head**-0.5,
126-
num_heads=self.num_attention_heads_per_partition,
127-
num_kv_heads=self.num_attention_heads_per_partition,
128-
out=context_layer)
129-
130-
context_layer = rearrange(context_layer,
131-
"(b s) h d -> s b (h d)",
132-
b=batch_size).contiguous()
133-
134-
output, _ = self.proj(context_layer)
135-
return output
136-
137-
138-
class AscendQwen2_5_VisionBlock(Qwen2_5_VisionBlock):
139-
140-
def __init__(
141-
self,
142-
dim: int,
143-
num_heads: int,
144-
mlp_hidden_dim: int,
145-
act_fn: Callable[[torch.Tensor], torch.Tensor] = F.silu,
146-
norm_layer: Optional[Callable[[int], nn.Module]] = None,
147-
quant_config: Optional[QuantizationConfig] = None,
148-
prefix: str = "",
149-
) -> None:
150-
super().__init__(dim, num_heads, mlp_hidden_dim, act_fn, norm_layer,
151-
quant_config, prefix)
152-
self.attn = AscendQwen2_5_VisionAttention(embed_dim=dim,
153-
num_heads=num_heads,
154-
projection_size=dim,
155-
quant_config=quant_config,
156-
prefix=f"{prefix}.attn")
157-
158-
def forward(self, x: torch.Tensor, cu_seqlens: torch.Tensor,
159-
cos: torch.Tensor, sin: torch.Tensor) -> torch.Tensor:
160-
x = x + self.attn(
161-
self.norm1(x), cu_seqlens=cu_seqlens, cos=cos, sin=sin)
162-
63+
x = x + self.attn(self.norm1(x),
64+
cu_seqlens=cu_seqlens,
65+
rotary_pos_emb_cos=rotary_pos_emb_cos,
66+
rotary_pos_emb_sin=rotary_pos_emb_sin)
16367
x = x + self.mlp(self.norm2(x))
16468
return x
16569

@@ -255,98 +159,6 @@ def cal_cos_sin(self, rotary_pos_emb):
255159
self.hidden_size_per_attention_head)
256160
return cos_new, sin_new
257161

258-
def pad_qkv_bias(self, bias):
259-
first_half = bias.reshape(
260-
-1, 3, self.origin_hidden_size_per_attention_head
261-
)[:, :, :self.half_origin_hidden_size_per_attention_head]
262-
second_half = bias.reshape(
263-
-1, 3, self.origin_hidden_size_per_attention_head
264-
)[:, :, self.half_origin_hidden_size_per_attention_head:]
265-
first_half_padded = torch.nn.functional.pad(
266-
first_half, (0, self.half_pad_hidden_size_per_attention_head))
267-
second_half_padded = torch.nn.functional.pad(
268-
second_half, (0, self.half_pad_hidden_size_per_attention_head))
269-
bias_padded = torch.cat([first_half_padded, second_half_padded], dim=2)
270-
bias_final = bias_padded.reshape(-1)
271-
return bias_final
272-
273-
def pad_qkv_weight(self, data):
274-
qkv_weight_first_half = data.reshape(
275-
-1, 3, self.origin_hidden_size_per_attention_head, self.hidden_size
276-
)[:, :, :self.half_origin_hidden_size_per_attention_head, :]
277-
qkv_weight_second_half = data.reshape(
278-
-1, 3, self.origin_hidden_size_per_attention_head, self.hidden_size
279-
)[:, :, self.half_origin_hidden_size_per_attention_head:, :]
280-
281-
qkv_weight_first_half_padded = torch.nn.functional.pad(
282-
qkv_weight_first_half,
283-
(0, 0, 0, self.half_pad_hidden_size_per_attention_head))
284-
qkv_weight_second_half_padded = torch.nn.functional.pad(
285-
qkv_weight_second_half,
286-
(0, 0, 0, self.half_pad_hidden_size_per_attention_head))
287-
qkv_weight_padded = torch.cat(
288-
[qkv_weight_first_half_padded, qkv_weight_second_half_padded],
289-
dim=2)
290-
qkv_weight_final = qkv_weight_padded.reshape(-1, self.hidden_size)
291-
292-
if is_enable_nz():
293-
qkv_weight_final_copy = torch.empty_like(qkv_weight_final).copy_(
294-
qkv_weight_final)
295-
qkv_weight_final_copy = torch_npu.npu_format_cast(
296-
qkv_weight_final_copy, ACL_FORMAT_FRACTAL_ND)
297-
return qkv_weight_final_copy
298-
299-
return qkv_weight_final
300-
301-
def pad_proj_weight(self, data):
302-
out_weight = torch.nn.functional.pad(
303-
data.reshape(self.hidden_size, -1,
304-
self.half_origin_hidden_size_per_attention_head),
305-
(0, self.half_pad_hidden_size_per_attention_head, 0, 0)).reshape(
306-
self.hidden_size, -1)
307-
308-
if is_enable_nz():
309-
out_weight_copy = torch.empty_like(out_weight).copy_(out_weight)
310-
out_weight_copy = torch_npu.npu_format_cast(
311-
out_weight_copy, ACL_FORMAT_FRACTAL_ND)
312-
return out_weight_copy
313-
314-
return out_weight
315-
316-
def pad_qkv_weight_scale_offset(self, data):
317-
reshaped_data = data.reshape(
318-
-1, 3, self.origin_hidden_size_per_attention_head, 1)
319-
data1 = reshaped_data[:, :, :self.
320-
half_origin_hidden_size_per_attention_head, :]
321-
data2 = reshaped_data[:, :, self.
322-
half_origin_hidden_size_per_attention_head:, :]
323-
data1_paded = torch.nn.functional.pad(
324-
data1, (0, 0, 0, self.half_pad_hidden_size_per_attention_head, 0,
325-
0, 0, 0))
326-
data2_paded = torch.nn.functional.pad(
327-
data2, (0, 0, 0, self.half_pad_hidden_size_per_attention_head, 0,
328-
0, 0, 0))
329-
res = torch.cat([data1_paded, data2_paded], dim=2)
330-
res = res.reshape(-1, 1)
331-
return res
332-
333-
def pad_qkv_deq_scale_quant_bias(self, data):
334-
reshaped_data = data.reshape(
335-
-1, 3, self.origin_hidden_size_per_attention_head)
336-
data1 = reshaped_data[:, :, :self.
337-
half_origin_hidden_size_per_attention_head]
338-
data2 = reshaped_data[:, :,
339-
self.half_origin_hidden_size_per_attention_head:]
340-
341-
data1_paded = torch.nn.functional.pad(
342-
data1, (0, self.half_pad_hidden_size_per_attention_head))
343-
data2_paded = torch.nn.functional.pad(
344-
data2, (0, self.half_pad_hidden_size_per_attention_head))
345-
346-
res = torch.cat([data1_paded, data2_paded], dim=2)
347-
res = res.reshape(-1)
348-
return res
349-
350162
def load_weights(self, weights: Iterable[Tuple[str,
351163
torch.Tensor]]) -> Set[str]:
352164
stacked_params_mapping: list[tuple[str, str, Union[str, int]]] = [
@@ -377,24 +189,6 @@ def load_weights(self, weights: Iterable[Tuple[str,
377189
weight_loader = getattr(param, "weight_loader",
378190
default_weight_loader)
379191
weight_loader(param, loaded_weight)
380-
if ("attn.proj.weight_scale" in name or
381-
"attn.proj.weight_offset" in name) and self.enable_pad:
382-
continue
383-
elif ("attn.proj.deq_scale" in name
384-
or "attn.proj.quant_bias" in name) and self.enable_pad:
385-
continue
386-
elif ("attn.qkv.weight_scale" in name
387-
or "attn.qkv.weight_offset" in name) and self.enable_pad:
388-
param.data = self.pad_qkv_weight_scale_offset(param.data)
389-
elif ("attn.qkv.deq_scale" in name
390-
or "attn.qkv.quant_bias" in name) and self.enable_pad:
391-
param.data = self.pad_qkv_deq_scale_quant_bias(param.data)
392-
elif ("attn.proj.weight" in name) and self.enable_pad:
393-
param.data = self.pad_proj_weight(param.data)
394-
elif ("attn.qkv.weight" in name) and self.enable_pad:
395-
param.data = self.pad_qkv_weight(param.data)
396-
elif ("attn.qkv.bias" in name) and self.enable_pad:
397-
param.data = self.pad_qkv_bias(param.data)
398192
loaded_params.add(name)
399193
return loaded_params
400194

@@ -501,7 +295,10 @@ def forward(
501295
cu_seqlens_now = cu_seqlens
502296
else:
503297
cu_seqlens_now = cu_window_seqlens
504-
x = blk(x, cu_seqlens=cu_seqlens_now, cos=cos, sin=sin)
298+
x = blk(x,
299+
cu_seqlens=cu_seqlens_now,
300+
rotary_pos_emb_cos=cos,
301+
rotary_pos_emb_sin=sin)
505302

506303
# adapter
507304
x = self.merger(x)

vllm_ascend/patch/worker/__init__.py

Lines changed: 1 addition & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -28,6 +28,7 @@
2828
import vllm_ascend.patch.worker.patch_weight_loader # noqa
2929
import vllm_ascend.patch.worker.patch_multimodal_merge # noqa
3030
import vllm_ascend.patch.worker.patch_minicpm # noqa
31+
import vllm_ascend.patch.worker.patch_qwen2_5_vl # noqa
3132

3233
from vllm_ascend.utils import vllm_version_is
3334

0 commit comments

Comments
 (0)