|
23 | 23 | - [Mil1974]_ |
24 | 24 | """ |
25 | 25 |
|
26 | | -#****************************************************************************** |
| 26 | +# **************************************************************************** |
27 | 27 | # Copyright (C) 2019 Michael Jung <[email protected]> |
28 | 28 | # |
29 | 29 | # Distributed under the terms of the GNU General Public License (GPL) |
30 | 30 | # as published by the Free Software Foundation; either version 2 of |
31 | 31 | # the License, or (at your option) any later version. |
32 | 32 | # https://www.gnu.org/licenses/ |
33 | | -#****************************************************************************** |
| 33 | +# **************************************************************************** |
34 | 34 |
|
35 | 35 | import sage.rings.abc |
36 | 36 | from sage.categories.vector_bundles import VectorBundles |
@@ -265,16 +265,19 @@ def _init_attributes(self): |
265 | 265 | sage: E = M.vector_bundle(2, 'E') |
266 | 266 | sage: E._init_attributes() |
267 | 267 | """ |
268 | | - self._section_modules = {} # dict of section modules with domains as |
269 | | - # keys |
| 268 | + self._section_modules = {} |
| 269 | + # dict of section modules with domains as keys |
| 270 | + |
270 | 271 | self._atlas = [] # list of trivializations defined on self |
271 | | - self._transitions = {} # dictionary of transition maps (key: pair of |
272 | | - # of trivializations) |
| 272 | + self._transitions = {} |
| 273 | + # dictionary of transition maps (key: pair of trivializations) |
| 274 | + |
273 | 275 | self._frames = [] # list of local frames for self |
274 | 276 | self._frame_changes = {} # dictionary of changes of frames |
275 | | - self._coframes = [] # list of local coframes for self |
276 | | - self._trivial_parts = set() # subsets of base space on which self is |
277 | | - # trivial |
| 277 | + self._coframes = [] # list of local coframes for self |
| 278 | + self._trivial_parts = set() |
| 279 | + # subsets of base space on which self is trivial |
| 280 | + |
278 | 281 | self._def_frame = None |
279 | 282 |
|
280 | 283 | def base_space(self): |
@@ -526,7 +529,7 @@ def atlas(self): |
526 | 529 | Trivialization (phi_V, E|_V), |
527 | 530 | Trivialization (phi_M, E|_M)] |
528 | 531 | """ |
529 | | - return list(self._atlas) # Make a (shallow) copy |
| 532 | + return list(self._atlas) # Make a (shallow) copy |
530 | 533 |
|
531 | 534 | def is_manifestly_trivial(self): |
532 | 535 | r""" |
@@ -869,17 +872,19 @@ def total_space(self): |
869 | 872 | sage: M = Manifold(3, 'M', structure='top') |
870 | 873 | sage: E = M.vector_bundle(2, 'E') |
871 | 874 | sage: E.total_space() |
872 | | - 6-dimensional topological manifold E |
| 875 | + 5-dimensional topological manifold E |
873 | 876 | """ |
874 | 877 | if self._total_space is None: |
875 | 878 | from sage.manifolds.manifold import Manifold |
876 | 879 | base_space = self._base_space |
877 | | - dim = base_space._dim * self._rank |
| 880 | + dim = base_space._dim + self._rank |
878 | 881 | sindex = base_space.start_index() |
879 | | - self._total_space = Manifold(dim, self._name, |
880 | | - latex_name=self._latex_name, |
881 | | - field=self._field, structure='topological', |
882 | | - start_index=sindex) |
| 882 | + self._total_space = Manifold( |
| 883 | + dim, self._name, |
| 884 | + latex_name=self._latex_name, |
| 885 | + field=self._field, structure='topological', |
| 886 | + start_index=sindex |
| 887 | + ) |
883 | 888 |
|
884 | 889 | # TODO: if update_atlas: introduce charts via self._atlas |
885 | 890 |
|
@@ -934,7 +939,7 @@ def set_change_of_frame(self, frame1, frame2, change_of_frame, |
934 | 939 | "section module") |
935 | 940 | if isinstance(change_of_frame, FreeModuleAutomorphism): |
936 | 941 | auto = change_of_frame |
937 | | - else: # Otherwise try to coerce the input |
| 942 | + else: # Otherwise try to coerce the input |
938 | 943 | auto_group = sec_module.general_linear_group() |
939 | 944 | auto = auto_group(change_of_frame, basis=frame1) |
940 | 945 | sec_module.set_change_of_basis(frame1, frame2, auto, |
|
0 commit comments