|
58 | 58 | # The combinatorial data of the toric varieties is stored separately here |
59 | 59 | # since we might want to use it later on to do the reverse lookup. |
60 | 60 | toric_varieties_rays_cones = { |
61 | | - 'dP6':[ |
| 61 | + 'dP6': [ |
62 | 62 | [(0, 1), (-1, 0), (-1, -1), (0, -1), (1, 0), (1, 1)], |
63 | | - [[0,1],[1,2],[2,3],[3,4],[4,5],[5,0]] ], |
64 | | - 'dP7':[ |
| 63 | + [[0, 1], [1, 2], [2, 3], [3, 4], [4, 5], [5, 0]]], |
| 64 | + 'dP7': [ |
65 | 65 | [(0, 1), (-1, 0), (-1, -1), (0, -1), (1, 0)], |
66 | | - [[0,1],[1,2],[2,3],[3,4],[4,0]] ], |
67 | | - 'dP8':[ |
68 | | - [(1,1), (0, 1), (-1, -1), (1, 0)], |
69 | | - [[0,1],[1,2],[2,3],[3,0]] |
| 66 | + [[0, 1], [1, 2], [2, 3], [3, 4], [4, 0]]], |
| 67 | + 'dP8': [ |
| 68 | + [(1, 1), (0, 1), (-1, -1), (1, 0)], |
| 69 | + [[0, 1], [1, 2], [2, 3], [3, 0]] |
70 | 70 | ], |
71 | | - 'P1xP1':[ |
| 71 | + 'P1xP1': [ |
72 | 72 | [(1, 0), (-1, 0), (0, 1), (0, -1)], |
73 | | - [[0,2],[2,1],[1,3],[3,0]] ], |
74 | | - 'P1xP1_Z2':[ |
| 73 | + [[0, 2], [2, 1], [1, 3], [3, 0]]], |
| 74 | + 'P1xP1_Z2': [ |
75 | 75 | [(1, 1), (-1, -1), (-1, 1), (1, -1)], |
76 | | - [[0,2],[2,1],[1,3],[3,0]] ], |
77 | | - 'P1':[ |
| 76 | + [[0, 2], [2, 1], [1, 3], [3, 0]]], |
| 77 | + 'P1': [ |
78 | 78 | [(1,), (-1,)], |
79 | | - [[0],[1]] ], |
80 | | - 'P2':[ |
81 | | - [(1,0), (0, 1), (-1, -1)], |
82 | | - [[0,1],[1,2],[2,0]] ], |
83 | | - 'A1':[ |
| 79 | + [[0], [1]]], |
| 80 | + 'P2': [ |
| 81 | + [(1, 0), (0, 1), (-1, -1)], |
| 82 | + [[0, 1], [1, 2], [2, 0]]], |
| 83 | + 'A1': [ |
84 | 84 | [(1,)], |
85 | | - [[0]] ], |
86 | | - 'A2':[ |
| 85 | + [[0]]], |
| 86 | + 'A2': [ |
87 | 87 | [(1, 0), (0, 1)], |
88 | | - [[0,1]] ], |
89 | | - 'A2_Z2':[ |
| 88 | + [[0, 1]]], |
| 89 | + 'A2_Z2': [ |
90 | 90 | [(1, 0), (1, 2)], |
91 | | - [[0,1]] ], |
92 | | - 'P1xA1':[ |
| 91 | + [[0, 1]]], |
| 92 | + 'P1xA1': [ |
93 | 93 | [(1, 0), (-1, 0), (0, 1)], |
94 | | - [[0,2],[2,1]] ], |
95 | | - 'Conifold':[ |
| 94 | + [[0, 2], [2, 1]]], |
| 95 | + 'Conifold': [ |
96 | 96 | [(0, 0, 1), (0, 1, 1), (1, 0, 1), (1, 1, 1)], |
97 | | - [[0,1,2,3]] ], |
98 | | - 'dP6xdP6':[ |
| 97 | + [[0, 1, 2, 3]]], |
| 98 | + 'dP6xdP6': [ |
99 | 99 | [(0, 1, 0, 0), (-1, 0, 0, 0), (-1, -1, 0, 0), |
100 | 100 | (0, -1, 0, 0), (1, 0, 0, 0), (1, 1, 0, 0), |
101 | 101 | (0, 0, 0, 1), (0, 0, -1, 0), (0, 0, -1, -1), |
|
108 | 108 | [3, 4, 8, 9], [3, 4, 9, 10], [3, 4, 10, 11], [3, 4, 6, 11], |
109 | 109 | [4, 5, 6, 7], [4, 5, 7, 8], [4, 5, 8, 9], [4, 5, 9, 10], |
110 | 110 | [4, 5, 10, 11], [4, 5, 6, 11], [0, 5, 6, 7], [0, 5, 7, 8], |
111 | | - [0, 5, 8, 9], [0, 5, 9, 10], [0, 5, 10, 11], [0, 5, 6, 11]] ], |
112 | | - 'Cube_face_fan':[ |
| 111 | + [0, 5, 8, 9], [0, 5, 9, 10], [0, 5, 10, 11], [0, 5, 6, 11]]], |
| 112 | + 'Cube_face_fan': [ |
113 | 113 | [(1, 1, 1), (1, -1, 1), (-1, 1, 1), (-1, -1, 1), |
114 | 114 | (-1, -1, -1), (-1, 1, -1), (1, -1, -1), (1, 1, -1)], |
115 | | - [[0,1,2,3], [4,5,6,7], [0,1,7,6], [4,5,3,2], [0,2,5,7], [4,6,1,3]] ], |
116 | | - 'Cube_sublattice':[ |
| 115 | + [[0, 1, 2, 3], [4, 5, 6, 7], [0, 1, 7, 6], [4, 5, 3, 2], [0, 2, 5, 7], [4, 6, 1, 3]]], |
| 116 | + 'Cube_sublattice': [ |
117 | 117 | [(1, 0, 0), (0, 1, 0), (0, 0, 1), (-1, 1, 1), |
118 | 118 | (-1, 0, 0), (0, -1, 0), (0, 0, -1), (1, -1, -1)], |
119 | | - [[0,1,2,3],[4,5,6,7],[0,1,7,6],[4,5,3,2],[0,2,5,7],[4,6,1,3]] ], |
120 | | - 'Cube_nonpolyhedral':[ |
| 119 | + [[0, 1, 2, 3], [4, 5, 6, 7], [0, 1, 7, 6], [4, 5, 3, 2], [0, 2, 5, 7], [4, 6, 1, 3]]], |
| 120 | + 'Cube_nonpolyhedral': [ |
121 | 121 | [(1, 2, 3), (1, -1, 1), (-1, 1, 1), (-1, -1, 1), |
122 | 122 | (-1, -1, -1), (-1, 1, -1), (1, -1, -1), (1, 1, -1)], |
123 | | - [[0,1,2,3],[4,5,6,7],[0,1,7,6],[4,5,3,2],[0,2,5,7],[4,6,1,3]] ], |
124 | | - 'BCdlOG':[ |
| 123 | + [[0, 1, 2, 3], [4, 5, 6, 7], [0, 1, 7, 6], [4, 5, 3, 2], [0, 2, 5, 7], [4, 6, 1, 3]]], |
| 124 | + 'BCdlOG': [ |
125 | 125 | [(-1, 0, 0, 2, 3), # 0 |
126 | | - ( 0,-1, 0, 2, 3), # 1 |
127 | | - ( 0, 0,-1, 2, 3), # 2 |
128 | | - ( 0, 0,-1, 1, 2), # 3 |
129 | | - ( 0, 0, 0,-1, 0), # 4 |
130 | | - ( 0, 0, 0, 0,-1), # 5 |
131 | | - ( 0, 0, 0, 2, 3), # 6 |
132 | | - ( 0, 0, 1, 2, 3), # 7 |
133 | | - ( 0, 0, 2, 2, 3), # 8 |
134 | | - ( 0, 0, 1, 1, 1), # 9 |
135 | | - ( 0, 1, 2, 2, 3), # 10 |
136 | | - ( 0, 1, 3, 2, 3), # 11 |
137 | | - ( 1, 0, 4, 2, 3)], # 12 |
138 | | - [ [0,6,7,1,4], [0,6,10,2,4], [0,6,1,2,4], [0,9,7,1,5], [0,6,7,1,5], |
139 | | - [0,6,10,2,5], [0,6,1,2,5], [0,9,1,4,5], [0,6,10,4,11],[0,6,7,4,11], |
140 | | - [0,6,10,5,11], [0,9,7,5,11], [0,6,7,5,11], [0,9,4,5,11], [0,10,4,5,11], |
141 | | - [0,9,7,1,8], [0,9,1,4,8], [0,7,1,4,8], [0,9,7,11,8], [0,9,4,11,8], |
142 | | - [0,7,4,11,8], [0,10,2,4,3], [0,1,2,4,3], [0,10,2,5,3], [0,1,2,5,3], |
143 | | - [0,10,4,5,3], [0,1,4,5,3], [12,6,7,1,4], [12,6,10,2,4],[12,6,1,2,4], |
144 | | - [12,9,7,1,5], [12,6,7,1,5], [12,6,10,2,5], [12,6,1,2,5], [12,9,1,4,5], |
145 | | - [12,6,10,4,11],[12,6,7,4,11], [12,6,10,5,11],[12,9,7,5,11],[12,6,7,5,11], |
146 | | - [12,9,4,5,11], [12,10,4,5,11],[12,9,7,1,8], [12,9,1,4,8], [12,7,1,4,8], |
147 | | - [12,9,7,11,8], [12,9,4,11,8], [12,7,4,11,8], [12,10,2,4,3],[12,1,2,4,3], |
148 | | - [12,10,2,5,3], [12,1,2,5,3], [12,10,4,5,3], [12,1,4,5,3] ] ], |
149 | | - 'BCdlOG_base':[ |
| 126 | + (0, -1, 0, 2, 3), # 1 |
| 127 | + (0, 0, -1, 2, 3), # 2 |
| 128 | + (0, 0, -1, 1, 2), # 3 |
| 129 | + (0, 0, 0, -1, 0), # 4 |
| 130 | + (0, 0, 0, 0, -1), # 5 |
| 131 | + (0, 0, 0, 2, 3), # 6 |
| 132 | + (0, 0, 1, 2, 3), # 7 |
| 133 | + (0, 0, 2, 2, 3), # 8 |
| 134 | + (0, 0, 1, 1, 1), # 9 |
| 135 | + (0, 1, 2, 2, 3), # 10 |
| 136 | + (0, 1, 3, 2, 3), # 11 |
| 137 | + (1, 0, 4, 2, 3)], # 12 |
| 138 | + [[0, 6, 7, 1, 4], [0, 6, 10, 2, 4], [0, 6, 1, 2, 4], [0, 9, 7, 1, 5], [0, 6, 7, 1, 5], |
| 139 | + [0, 6, 10, 2, 5], [0, 6, 1, 2, 5], [0, 9, 1, 4, 5], [0, 6, 10, 4, 11], [0, 6, 7, 4, 11], |
| 140 | + [0, 6, 10, 5, 11], [0, 9, 7, 5, 11], [0, 6, 7, 5, 11], [0, 9, 4, 5, 11], [0, 10, 4, 5, 11], |
| 141 | + [0, 9, 7, 1, 8], [0, 9, 1, 4, 8], [0, 7, 1, 4, 8], [0, 9, 7, 11, 8], [0, 9, 4, 11, 8], |
| 142 | + [0, 7, 4, 11, 8], [0, 10, 2, 4, 3], [0, 1, 2, 4, 3], [0, 10, 2, 5, 3], [0, 1, 2, 5, 3], |
| 143 | + [0, 10, 4, 5, 3], [0, 1, 4, 5, 3], [12, 6, 7, 1, 4], [12, 6, 10, 2, 4], [12, 6, 1, 2, 4], |
| 144 | + [12, 9, 7, 1, 5], [12, 6, 7, 1, 5], [12, 6, 10, 2, 5], [12, 6, 1, 2, 5], [12, 9, 1, 4, 5], |
| 145 | + [12, 6, 10, 4, 11], [12, 6, 7, 4, 11], [12, 6, 10, 5, 11], [12, 9, 7, 5, 11], [12, 6, 7, 5, 11], |
| 146 | + [12, 9, 4, 5, 11], [12, 10, 4, 5, 11], [12, 9, 7, 1, 8], [12, 9, 1, 4, 8], [12, 7, 1, 4, 8], |
| 147 | + [12, 9, 7, 11, 8], [12, 9, 4, 11, 8], [12, 7, 4, 11, 8], [12, 10, 2, 4, 3], [12, 1, 2, 4, 3], |
| 148 | + [12, 10, 2, 5, 3], [12, 1, 2, 5, 3], [12, 10, 4, 5, 3], [12, 1, 4, 5, 3]]], |
| 149 | + 'BCdlOG_base': [ |
150 | 150 | [(-1, 0, 0), |
151 | | - ( 0,-1, 0), |
152 | | - ( 0, 0,-1), |
153 | | - ( 0, 0, 1), |
154 | | - ( 0, 1, 2), |
155 | | - ( 0, 1, 3), |
156 | | - ( 1, 0, 4)], |
157 | | - [[0,4,2],[0,4,5],[0,5,3],[0,1,3],[0,1,2], |
158 | | - [6,4,2],[6,4,5],[6,5,3],[6,1,3],[6,1,2]] ], |
159 | | - 'P2_112':[ |
160 | | - [(1,0), (0, 1), (-1, -2)], |
161 | | - [[0,1],[1,2],[2,0]] ], |
162 | | - 'P2_123':[ |
163 | | - [(1,0), (0, 1), (-2, -3)], |
164 | | - [[0,1],[1,2],[2,0]] ], |
165 | | - 'P4_11169':[ |
| 151 | + (0, -1, 0), |
| 152 | + (0, 0, -1), |
| 153 | + (0, 0, 1), |
| 154 | + (0, 1, 2), |
| 155 | + (0, 1, 3), |
| 156 | + (1, 0, 4)], |
| 157 | + [[0, 4, 2], [0, 4, 5], [0, 5, 3], [0, 1, 3], [0, 1, 2], |
| 158 | + [6, 4, 2], [6, 4, 5], [6, 5, 3], [6, 1, 3], [6, 1, 2]]], |
| 159 | + 'P2_112': [ |
| 160 | + [(1, 0), (0, 1), (-1, -2)], |
| 161 | + [[0, 1], [1, 2], [2, 0]]], |
| 162 | + 'P2_123': [ |
| 163 | + [(1, 0), (0, 1), (-2, -3)], |
| 164 | + [[0, 1], [1, 2], [2, 0]]], |
| 165 | + 'P4_11169': [ |
166 | 166 | [(1, 0, 0, 0), (0, 1, 0, 0), (0, 0, 1, 0), (0, 0, 0, 1), (-9, -6, -1, -1)], |
167 | | - [[0,1,2,3],[0,1,2,4],[0,1,3,4],[0,2,3,4],[1,2,3,4]] ], |
168 | | - 'P4_11169_resolved':[ |
| 167 | + [[0, 1, 2, 3], [0, 1, 2, 4], [0, 1, 3, 4], [0, 2, 3, 4], [1, 2, 3, 4]]], |
| 168 | + 'P4_11169_resolved': [ |
169 | 169 | [(1, 0, 0, 0), (0, 1, 0, 0), (0, 0, 1, 0), (0, 0, 0, 1), (-9, -6, -1, -1), (-3, -2, 0, 0)], |
170 | 170 | [[0, 1, 2, 3], [0, 1, 3, 4], [0, 1, 2, 4], [1, 3, 4, 5], [0, 3, 4, 5], |
171 | | - [1, 2, 4, 5], [0, 2, 4, 5], [1, 2, 3, 5], [0, 2, 3, 5]] ], |
172 | | - 'P4_11133':[ |
| 171 | + [1, 2, 4, 5], [0, 2, 4, 5], [1, 2, 3, 5], [0, 2, 3, 5]]], |
| 172 | + 'P4_11133': [ |
173 | 173 | [(1, 0, 0, 0), (0, 1, 0, 0), (0, 0, 1, 0), (0, 0, 0, 1), (-3, -3, -1, -1)], |
174 | | - [[0,1,2,3],[0,1,2,4],[0,1,3,4],[0,2,3,4],[1,2,3,4]] ], |
175 | | - 'P4_11133_resolved':[ |
| 174 | + [[0, 1, 2, 3], [0, 1, 2, 4], [0, 1, 3, 4], [0, 2, 3, 4], [1, 2, 3, 4]]], |
| 175 | + 'P4_11133_resolved': [ |
176 | 176 | [(1, 0, 0, 0), (0, 1, 0, 0), (0, 0, 1, 0), (0, 0, 0, 1), (-3, -3, -1, -1), (-1, -1, 0, 0)], |
177 | 177 | [[0, 1, 2, 3], [0, 1, 3, 4], [0, 1, 2, 4], [1, 3, 4, 5], [0, 3, 4, 5], |
178 | | - [1, 2, 4, 5], [0, 2, 4, 5], [1, 2, 3, 5], [0, 2, 3, 5]] ] |
| 178 | + [1, 2, 4, 5], [0, 2, 4, 5], [1, 2, 3, 5], [0, 2, 3, 5]]] |
179 | 179 | } |
180 | 180 |
|
181 | 181 |
|
@@ -264,7 +264,7 @@ def _make_CPRFanoToricVariety(self, name, coordinate_names, base_ring): |
264 | 264 | polytope = LatticePolytope(rays, lattice=ToricLattice(len(rays[0]))) |
265 | 265 | points = [tuple(_) for _ in polytope.points()] |
266 | 266 | ray2point = [points.index(r) for r in rays] |
267 | | - charts = [ [ray2point[i] for i in c] for c in cones ] |
| 267 | + charts = [[ray2point[i] for i in c] for c in cones] |
268 | 268 | self.__dict__[dict_key] = \ |
269 | 269 | CPRFanoToricVariety(Delta_polar=polytope, |
270 | 270 | coordinate_points=ray2point, |
@@ -868,7 +868,7 @@ def Cube_nonpolyhedral(self, names='z+', base_ring=QQ): |
868 | 868 | """ |
869 | 869 | return self._make_ToricVariety('Cube_nonpolyhedral', names, base_ring) |
870 | 870 |
|
871 | | - def Cube_deformation(self,k, names=None, base_ring=QQ): |
| 871 | + def Cube_deformation(self, k, names=None, base_ring=QQ): |
872 | 872 | r""" |
873 | 873 | Construct, for each `k\in\ZZ_{\geq 0}`, a toric variety with |
874 | 874 | `\ZZ_k`-torsion in the Chow group. |
@@ -1268,7 +1268,7 @@ def WP(self, *q, **kw): |
1268 | 1268 | rays = rays + [v] |
1269 | 1269 | w_c = w[:i] + w[i + 1:] |
1270 | 1270 | cones = cones + [tuple(w_c)] |
1271 | | - fan = Fan(cones,rays) |
| 1271 | + fan = Fan(cones, rays) |
1272 | 1272 | return ToricVariety(fan, coordinate_names=names, base_ring=base_ring) |
1273 | 1273 |
|
1274 | 1274 | def torus(self, n, names='z+', base_ring=QQ): |
|
0 commit comments