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Challenges of Hilt in TikTok



Build Time Impact

10% of TikTok compilation duration
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Multiple Rounds Annotation Processing

Dagger Processor Dagger Generated 
Source

Compiler
Bytecode



Hilt Standardized Hierarchy

Activity

Application
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TikTok Hierarchy
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TikTok Hierarchy

Activity

Application

FragmentA FragmentB

SubFragment

SubFragment

ObjForFragA

SubFragment

ObjForFragB
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Runtime Loading Overhead

388K  ANR per month 

Top 3  in TikTok



Package Size

Fragment

Module

GeneratedInjector

MemberInjector

Hilt_Fragment

ModuleImpl

ProvideSthFactory



What’s the Ideal DI Pattern?



Flexible
Flexible component hierarchy

Fast
Fast compile-time & Fast runtime

Safe
Verify dependency errors 
at compile stage

Minimized
Minimal code generated



What is the basis of DI?
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What is the basis of DI?

Producer Consumer
DI Framework



🧬  Knit
DI Solution
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🧬  Knit

@Provides 
class UserRepository 

class UserService { 
   val repository: UserRepository by di 
}

class UserRepository 

class UserService { 
  val repository: UserRepository get() { 
    var localRepo = this._repository 
    if (localRepo != null) return localRepo 
    synchronized(this) { 
      localRepo = this._repository 
      if (localRepo != null) return localRepo 
      localRepo = UserRepository() 
      _repository = localRepo 
      return localRepo 
    } 
  } 
}

After Knit Transform



🧬  Knit

class UserRepository 

class UserService { 
  val repository: UserRepository get() { 
    var localRepo = this._repository 
    if (localRepo != null) return localRepo 
    synchronized(this) { 
      localRepo = this._repository 
      if (localRepo != null) return localRepo 
      localRepo = UserRepository() 
      _repository = localRepo 
      return localRepo 
    } 
  } 
}

.method public final 
getRepository()Lknit/demo/UserRepository; 
   aload 0 # "this" 
   getfield knit/demo/UserService _repository 
   astore 1 # val localRepo = this._repository 
   aload 1 
   ifnonnull :L4 

   aload 0 
   monitorenter # synchronized(this) 
 :L0 
   aload 0 
   getfield knit/demo/UserService _repository 
   astore 1 # localRepo = this._repository 
   aload 1 
   ifnonnull :L3 
 :L1 
   anew knit/demo/UserRepository 
   dup 
   invokespecial knit/demo/UserRepository <init> ()V 
   astore 1 # localRepo = UserRepository() 
 :L2 
   aload 0 
   aload 1 
   putfield knit/demo/UserService _repository 
 :L3 
   aload 0 
   monitorexit 
 :L4 
   aload 1 
   areturn 
.end method



🧬  Knit

@Provides 
class UserRepository 

class UserService { 
   val repository: UserRepository by di 
}



🧬  @Provides with Arguments

@Provides 
class UserRepository(val userName: String) 

class UserService { 

   @Provides 
   private fun provideName(): String = “bob” 

   val repository: UserRepository by di 
}



🧬  @Provides with Arguments

@Provides 
class UserRepository(val userName: String) 

class UserService { 

   @Provides 
   private fun provideName(): String = “bob” 

   val repository: UserRepository by di 
               -> UserRepository(provideName()) 
}
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    @Component val main: MainActivityComponent 
) { 
    val userRepository: UserRepository by di 
}
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🧬  Provided by Parent Component

class MainActivityComponent( 
    @Provides val userRepository: UserRepository 
) 

class ProfileComponent( 
    @Component val main: MainActivityComponent 
) { 
    val userRepository: UserRepository by di 
                        -> main.userRepository 
}

ProfileComponent

MainActivityComponent



🧬  Provided by Parent Component
class ApplicationComponent( 
    @Provides val application: Application, 
) 

class MainActivityComponent( 
    @Component val appComponent: ApplicationComponent, 
    @Provides val userRepository: UserRepository, 
) 

class ProfileComponent( 
    @Component val main: MainActivityComponent, 
) { 
    val application: Application by di 
    val userRepository: UserRepository by di 
}

ProfileComponent

MainActivityComponent

ApplicationComponent



🧬  Provided by Parent Component

class MainActivityComponent( 
    @Provides val userRepository: UserRepository 
) { 
    val profile = ProfileComponent(this) 
} 

class ProfileComponent( 
    @Component val main: MainActivityComponent 
) { 
    val userRepository: UserRepository by di 
}

ProfileComponent

MainActivityComponent

create require



🧬  Provided by Parent Component

// main module 
class MainActivityComponent( 
    @Provides val userRepository: UserRepository 
) { 
    val profile = ProfileComponent(this) 
} 

// profile module 
class ProfileComponent( 
    @Component val main: MainActivityComponent 
) { 
    val userRepository: UserRepository by di 
}

ProfileComponent

MainActivityComponent

create require



🧬  Interface Injection



🧬  Interface Injection
// main-api module 
interface MainActivityComponent { 
    @get:Provides 
    val userRepository: UserRepository 
} 

// main-impl module 
@Provides(MainActivityComponent::class) 
class MainActivityComponentImpl( 
    override val userRepository: UserRepository 
) : MainActivityComponent 

// profile module 
class ProfileComponent( 
    @Component val main: MainActivityComponent 
) { 
    val userRepository: UserRepository by di 
}

ProfileComponent

MainActivityComponent

provide

require

MainActivityComponentImpl
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🧬  More Features

- Multi-bindings 

- Singleton 

- ViewModel Injection 

- Factory / Lazy / Loadable

@Provides(Repo::class) 
class RemoteRepo: Repo 

@Provides(Repo::class) 
class LocalRepo: Repo 

val repos: List<Repo> by di

- Multi-bindings



🧬  More Features

- Multi-bindings 

- Singleton 

- ViewModel Injection 

- Factory / Lazy / Loadable

- Singleton

var i: Int = 1 

@Provides 
@Singleton 
fun provideInt(): Int = i++ 

val a: Int by di // 1 
val b: Int by di // 1



🧬  More Features

- Multi-bindings 

- Singleton 

- ViewModel Injection 

- Factory / Lazy / Loadable

- ViewModel Injection

class FooViewModel 
    @KnitViewModel constructor()  
: ViewModel() 

@Component 
class MyFragment : Fragment() { 
    val fooVM: FooViewModel 
        by knitViewModel() 
}



🧬  More Features

- Multi-bindings 

- Singleton 

- ViewModel Injection 

- Factory / Lazy / Loadable- Factory / Lazy / Loadable

@Provides 
class Foo 

val factory: Factory<Foo> by di 
val lazy: Lazy<Foo> by di 
val loadable: Loadable<Foo> by di 



🧬  More Features

- Multi-bindings 

- Singleton 

- ViewModel Injection 

- Factory / Lazy / Loadable- Factory / Lazy / Loadable

@Provides 
class Foo 

val factory: () -> Foo by di 
val lazy: kotlin.Lazy<Foo> by di 
val loadable: Loadable<Foo> by di 



🧬  Benefits After Using Knit



🧬  Benefits After Using Knit

Build time reduced by 10% 

ANR reduced 388K per month

Package size reduced 1M
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🧬  Compare with Hilt

Source Source
Hilt Dagger

Source
Compiler

Bytecode

Source
KnitCompiler

Bytecode Bytecode
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🧬  Smaller Package

Fragment

Component

Knit



🧬  Smaller Package

FragmentKnit



🧬  Runtime Performance



🧬  Runtime Performance

Everything Lazily by Default



🧬  Limitations



🧬  Limitations

- Kotlin only 

- Not compatible with JSR330 @Inject 

- No sources generated



🧬  Future Plans
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🧬  Future Plans

-   Inject functions

@Provides 
fun provideFooByKey(key: String): Foo = Foo(key) 

class Container { 
   val fooFactory: (String) -> Foo by di 
} 



🧬  Future Plans

-  Kotlin Multiplatform support



🧬  Future Plans

-  Inlay hint in IDE
class Parent { 
   @Provides 
   val bar: Bar = ... 
} 

class Foo { 
   @Component 
   val parent: Parent = Parent() 

   val bar: Bar by di 
} 

= parent.bar



🧬  Open Source



🧬  Open Source

github.com/tiktok/knit


