Rethinking Dependency Injection
Producer-Consumer Linking at the Bytecode Level

Junyu Yue
Mobile Infrastructure @ TikTok

d' TikTok

Agenda

1. Challenges of Hilt
2. TikTok DI Solution

3. Open Source & Future Plans

d' TikTok

Challenges of Hilt in TikTok

Build Time Impact

of TikTok compilation duration

d' TikTok

Multiple Rounds Annotation Processing

N\ Hilt Processor
Source Code
_ W,

~

Hilt Generated
Source

~

y,

Dagger Processor i Da '
gger

-

Sc

d' TikTok

Hilt Processor

~

Hilt Generated
Source

~

y,

Dagger Processor

Multiple Rounds Annotation Processing

-

(N .
Dagger Generated | “ompiler

Source

_/

d' TikTok

Dagger Processor

-

Source

Dagger Generated

_J

Compiler

Bytecode

Multiple Rounds Annotation Processing

d' TikTok

Hilt Standardized Hierarchy

Application

ObjForAct \

Activity Activity

ObjForFrag \ ___

TikTok Hierarchy

Application

Activity

Fragment Fragment

d' TikTok

TikTok Hierarchy

Application

Activity

FragmentA FragmentB

ObjForFragA -

SubFragment

d' TikTok

ObjForFragB

' /

FeedFragment DetailFragment

BEAUTIFUL SWITZERLAND ¥ ., BEAUTIFUL SWITZERLAND ®
#switzerland #swissbeautiful #ti.. more #switzerland #swissbeautiful #ti.. more
I
AN o Add comment...
Home Friends Inbox Profile c G e

d' TikTok

FeedFragment DetailFragment

~ Same

]

i

BEAUTIFUL SWITZERLAND Ve BEAUTIFUL SWITZERLAND &
#switzerland #swissbeautiful #ti.. more #switzerland #swissbeautiful #ti.. more ‘e
00 o)
ﬁ ~ E‘) Add comment...

Home Friends Inbox Profile

d' TikTok

Different :

FeedFragment

DetailFragment

]

"
|

BEAUTIFUL SWITZERLAND &

BEAUTIFUL SWITZERLAND B G
#switzerland #swissbeautiful #ti.. more " '

#switzerland #swissbeautiful #ti.. more

[
® 2 B =z 2 o & o

Home Friends Inbox Profile

Add comment...

d' TikTok

Runtime Loading Overhead

ANR per month

in TikTok

d' TikTok

Package Size

Generatedinjector

Memberlnjector

k Hilt_Fragment J

Modulelmpl

ProvideSthFactory

d' TikTok

What'’s the Ideal DI Pattern?

Fast Flexible

Fast compile-time & Fast runtime Flexible component hierarchy

Safe Minimized

Verity dependency errors Minimal code generated
at compile stage

d' TikTok

What is the basis of DI?

What is the basis of DI?

Producer Consumer

d' TikTok

What is the basis of DI?

DI Framework

d' TikTok

TikTok DI Solution

€3
5 Knit

Knit

@Provides
class UserRepository

class UserService {
val repository: UserRepository by di
}

d' TikTok

& Knit

@Provides
class UserRepository

class UserService {
val repository: UserRepository by di
}

d' TikTok

& Knit

@Provides
c lass UserRepository

class UserService 1
val repository: UserRepository by di
}

d' TikTok

Knit

@Provides
class UserRepository

class UserService {
val repository: UserRepository by di
}

d' TikTok

(ﬁ o
& Knit

@Provides
class UserRepository

class UserService {
val repository: UserRepository by di
}

d' TikTok

After Knit Transform

@Provides class UserRepository

class UserRepository class UserService {

val repository: UserRepository get() {

class UserService A return UserRepository()

val repository: UserRepository by di \

;)

d' TikTok

< Knit

@Provides
class UserRepository

class UserService {
val repository: UserRepository by di

h

After Knit Transform

class UserRepository

class UserService {
val repository: UserRepository get() {
var localRepo = this. _repository
if (localRepo '= null) return localRepo

synchronized(this) {
localRepo = this._repository
if (localRepo '= null) return localRepo
localRepo = UserRepository()
_repository = localRepo
return localRepo

}

}
}

d' TikTok

class UserRepository

class UserService {

val repository: UserRepository get() {
var localRepo = this._repository

if (localRepo '= null) return localRepo
synchronized(this) {

}

}

}

localRepo = this. repository

if (localRepo '= null) return localRepo
localRepo = UserRepository()
_repository = localRepo

return localRepo

.method public final
getRepository()Lknit/demo/UserRepository;
aload @ # "this"
getfield knit/demo/UserService _repository
astore 1 # val localRepo = this._repository
aload 1
ifnonnull :L4

aload 0
monitorenter # synchronized(this)
1 L0
aload 0
getfield knit/demo/UserService _repository
astore 1 # localRepo = this._repository
aload 1
ifnonnull :L3
L1
anew knit/demo/UserRepository
dup
invokespecial knit/demo/UserRepository <init> ()V
astore 1 # localRepo = UserRepository()
12
aload 0
aload 1
putfield knit/demo/UserService _repository
L3
aload 0
monitorexit
L4
aload 1
areturn
.end method

d' TikTok

Knit

@Provides
class UserRepository

class UserService {
val repository: UserRepository by di
}

d' TikTok

& @Provides with Arguments

@Provides
class UserRepository(val userName: String)

class UserService {

@Provides
private fun provideName(): String = “bob”

val repository: UserRepository by di

}

d' TikTok

@Provides with Arguments

@Provides
class UserRepository(val userName: String)

class UserService {

@Provides
private fun provideName(): String = “bob”

val repository: UserRepository by di
—> UserRepository(provideName())

d' TikTok

& Provided by Parent Component

Provided by Parent Component

class MainActivityComponent (
@Provides val userRepository: UserRepository
)

class ProfileComponent (
@Component val main: MainActivityComponent

) 1

val userRepository: UserRepository by di
}

d' TikTok

Provided by Parent Component

class MainActivityComponent (
@Provides val userRepository: UserRepository
)

class ProfileComponent (
@Component val main: MainActivityComponent

) 1

val userRepository: UserRepository by di
—> maln.userRepository

d' TikTok

& Provided by Parent Component

class MainActivityComponent (
@Provides val userRepository: UserRepository
)

MainActivityComponent

class ProfileComponent (

@Component val main: MainActivityComponent
) A :
val userRepository: UserRepository by di ProfileComponent

—> maln.userRepository

d' TikTok

h

class ApplicationComponent (
@Provides val application: Application,
)

class MainActivityComponent (

@Component val appComponent: ApplicationComponent,

@Provides val userRepository: UserRepository,

)

class ProfileComponent (
@Component val main: MainActivityComponent,
) 1

val application: Application by di
val userRepository: UserRepository by di

¥ Provided by Parent Component

ApplicationComponent

MainActivityComponent

ProfileComponent

d' TikTok

& Provided by Parent Component

class MainActivityComponent (
@Provides val userRepository: UserRepository

) {

val profile MainActivityComponent
}

ProfileComponent(this)

T require

class ProfileComponent (
@Component val main: MainActivityComponent

) {

val userRepository: UserRepository by di
}

ProfileComponent

d' TikTok

& Provided by Parent Component

class MainActivityComponent (
@Provides val userRepository: UserRepository

) {

val profile MainActivityComponent
}

ProfileComponent(this)

T require

class ProfileComponent (
@Component val main: MainActivityComponent

) 1

val userRepository: UserRepository by di
}

ProfileComponent

d' TikTok

4’ Interface Injection

4’ Interface Injection

interface MainActivityComponent {
@get:Provides
val userRepository: UserRepository

@Provides(MainActivityComponent::class)
class MainActivityComponentImpl(

override val userRepository: UserRepository
) : MainActivityComponent

class ProfileComponent (
@Component val main: MainActivityComponent

) 1

val userRepository: UserRepository by di
}

MainActivityComponentimpl

provide

MainActivityComponent

require

ProfileComponent

d' TikTok

4 More Features

< More Features

- Multi-bindings
- Singleton
- ViewModel Injection

- Factory / Lazy / Loadable

d' TikTok

<+ More Features

- Multi-bindings
- Singleton
- ViewModel Injection

- Factory / Lazy / Loadable

@Provides(Repo::class)
class RemoteRepo: Repo

@Provides(Repo::class)
class LocalRepo: Repo

val repos: List<Repo> by di

d' TikTok

<’ More Features

- MU|t|'b|nd|ngS var 1* Int =1
- Qi @Provides
SmgletOn @5ingleton

: : : fun provideInt(): Int = i++
- ViewModel Injection
val a: Int by di // 1

- Factory / Lazy / Loadable val b: Int by di /71

d' TikTok

<+ More Features

- Multi-bindings
- Singleton
- ViewModel Injection

- Factory / Lazy / Loadable

class FooViewModel
@KnitViewModel constructor()
+ ViewModel()

@Component
class MyFragment : Fragment() {
val fooVM: FooViewModel
by knitViewModel()

d' TikTok

More Features

- Multi-bindings

@Provides

, class Foo

- Singleton

val factory: Factory<Foo> by di
val lazy: Lazy<Foo> by di

- ViewModel Injection val loadable: Loadable<Foo> by di

- Factory / Lazy / Loadable

d' TikTok

More Features

- Multi-bindings

@Provides

, class Foo

- Singleton

val factory: () —> Foo by di

val lazy: kotlin.Lazy<Foo> by di

- ViewModel Injection val loadable: Loadable<Foo> by di

- Factory / Lazy / Loadable

d' TikTok

& Benefits After Using Knit

4 Benefits After Using Knit

Build time reduced by 10%
ANR reduced 388K per month

Package size reduced ™

d' TikTok

d° Compare with Hilt

& Compare with Hilt

~

_

Source

~

J

allli

1 Dagger
Source

r

.

Source

~

.

Compiler

()

Bytecode

d' TikTok

& Compare with Hilt

~

_

Source

~

.

allli

1 Dagger
Source

-

_

Source

~

.

Dagger

s 1 Compi
Source

d' TikTok

& Compare with Hilt

Source

Source

allli i

Source

Compiler

(-)

Bytecode

1 Dagger

Knit

r

.

1 Compiler
Source

v,

(- R

Bytecode

()

Bytecode

d' TikTok

& Smaller Package

" Smaller Package

Filt

d' TikTok

" Smaller Package

Filt

Generatedinjector

Memberlnjector

.

J

~ Hilt_Fragment

Modulelmpl

\.

ProvideSthFactory

J

d' TikTok

" Smaller Package

Knit

d' TikTok

" Smaller Package

Knit

d' TikTok

<+ Runtime Performance

< Runtime Performance

Everything Lazily by Default

<~ Limitations

< Limitations

- Kotlin only
- Not compatible with JSR330 @Inject

- No sources generated

d' TikTok

o Future Plans

&’ Future Plans

- Inject functions

d' TikTok

Future Plans

- Inject functions

@Provides
fun provideFooByKey(key: String): Foo = Foo(key)

class Container 1
val fooFactory: (String) -> Foo by di
}

d' TikTok

< Future Plans

- Kotlin Multiplatform support

d' TikTok

-
< Future Plans

- Inlay hint in IDE

class Parent {
@Provides
val bar: Bar = ...

}

class Foo {
@Component
val parent: Parent = Parent()

val bar: Bar by di =parent.bar

F
d' TikTok

4° Open Source

Open Source

-
_t\"
N —\‘"

github.com/tiktok/knit

