
Rethinking Dependency Injection
Producer-Consumer Linking at the Bytecode Level

Mobile Infrastructure @ TikTok

Junyu Yue

Agenda

1. Challenges of Hilt
2. TikTok DI Solution
3. Open Source & Future Plans

Challenges of Hilt in TikTok

Build Time Impact

10% of TikTok compilation duration

Multiple Rounds Annotation Processing

Source Code Hilt Generated
Source

Hilt Processor Dagger Processor Dagger Generated
Source

Multiple Rounds Annotation Processing

Hilt Generated
Source

Hilt Processor Dagger Processor Dagger Generated
Source

Compiler

Multiple Rounds Annotation Processing

Dagger Processor Dagger Generated
Source

Compiler
Bytecode

Hilt Standardized Hierarchy

Activity

Application

Fragment

Activity

Fragment Fragment

ObjForAct

ObjForFrag

TikTok Hierarchy

Activity

Application

Fragment Fragment

TikTok Hierarchy

Activity

Application

FragmentA FragmentB

SubFragment

SubFragment

ObjForFragA

SubFragment

ObjForFragB

FeedFragment DetailFragment

FeedFragment DetailFragment

Same

FeedFragment DetailFragment

Different

Runtime Loading Overhead

388K ANR per month

Top 3 in TikTok

Package Size

Fragment

Module

GeneratedInjector

MemberInjector

Hilt_Fragment

ModuleImpl

ProvideSthFactory

What’s the Ideal DI Pattern?

Flexible
Flexible component hierarchy

Fast
Fast compile-time & Fast runtime

Safe
Verify dependency errors
at compile stage

Minimized
Minimal code generated

What is the basis of DI?

What is the basis of DI?

Producer Consumer

What is the basis of DI?

Producer Consumer
DI Framework

🧬 Knit
DI Solution

🧬 Knit

@Provides
class UserRepository

class UserService {
 val repository: UserRepository by di
}

🧬 Knit

@Provides
class UserRepository

class UserService {
 val repository: UserRepository by di
}

@Provides

🧬 Knit

@Provides
class UserRepository

class UserService {
 val repository: UserRepository by di
}

val repository: UserRepository by di

🧬 Knit

@Provides
class UserRepository

class UserService {
 val repository: UserRepository by di
}

🧬 Knit

@Provides
class UserRepository

class UserService {
 val repository: UserRepository by di
}

🧬 Knit

@Provides
class UserRepository

class UserService {
 val repository: UserRepository by di
}

class UserRepository

class UserService {
 val repository: UserRepository get() {
 return UserRepository()
 }
}

After Knit Transform

🧬 Knit

@Provides
class UserRepository

class UserService {
 val repository: UserRepository by di
}

class UserRepository

class UserService {
 val repository: UserRepository get() {
 var localRepo = this._repository
 if (localRepo != null) return localRepo
 synchronized(this) {
 localRepo = this._repository
 if (localRepo != null) return localRepo
 localRepo = UserRepository()
 _repository = localRepo
 return localRepo
 }
 }
}

After Knit Transform

🧬 Knit

class UserRepository

class UserService {
 val repository: UserRepository get() {
 var localRepo = this._repository
 if (localRepo != null) return localRepo
 synchronized(this) {
 localRepo = this._repository
 if (localRepo != null) return localRepo
 localRepo = UserRepository()
 _repository = localRepo
 return localRepo
 }
 }
}

.method public final
getRepository()Lknit/demo/UserRepository;
 aload 0 # "this"
 getfield knit/demo/UserService _repository
 astore 1 # val localRepo = this._repository
 aload 1
 ifnonnull :L4

 aload 0
 monitorenter # synchronized(this)
 :L0
 aload 0
 getfield knit/demo/UserService _repository
 astore 1 # localRepo = this._repository
 aload 1
 ifnonnull :L3
 :L1
 anew knit/demo/UserRepository
 dup
 invokespecial knit/demo/UserRepository <init> ()V
 astore 1 # localRepo = UserRepository()
 :L2
 aload 0
 aload 1
 putfield knit/demo/UserService _repository
 :L3
 aload 0
 monitorexit
 :L4
 aload 1
 areturn
.end method

🧬 Knit

@Provides
class UserRepository

class UserService {
 val repository: UserRepository by di
}

🧬 @Provides with Arguments

@Provides
class UserRepository(val userName: String)

class UserService {

 @Provides
 private fun provideName(): String = “bob”

 val repository: UserRepository by di
}

🧬 @Provides with Arguments

@Provides
class UserRepository(val userName: String)

class UserService {

 @Provides
 private fun provideName(): String = “bob”

 val repository: UserRepository by di
 -> UserRepository(provideName())
}

🧬 Provided by Parent Component

🧬 Provided by Parent Component

class MainActivityComponent(
 @Provides val userRepository: UserRepository
)

class ProfileComponent(
 @Component val main: MainActivityComponent
) {
 val userRepository: UserRepository by di
}

🧬 Provided by Parent Component

class MainActivityComponent(
 @Provides val userRepository: UserRepository
)

class ProfileComponent(
 @Component val main: MainActivityComponent
) {
 val userRepository: UserRepository by di
 -> main.userRepository
}

🧬 Provided by Parent Component

class MainActivityComponent(
 @Provides val userRepository: UserRepository
)

class ProfileComponent(
 @Component val main: MainActivityComponent
) {
 val userRepository: UserRepository by di
 -> main.userRepository
}

ProfileComponent

MainActivityComponent

🧬 Provided by Parent Component
class ApplicationComponent(
 @Provides val application: Application,
)

class MainActivityComponent(
 @Component val appComponent: ApplicationComponent,
 @Provides val userRepository: UserRepository,
)

class ProfileComponent(
 @Component val main: MainActivityComponent,
) {
 val application: Application by di
 val userRepository: UserRepository by di
}

ProfileComponent

MainActivityComponent

ApplicationComponent

🧬 Provided by Parent Component

class MainActivityComponent(
 @Provides val userRepository: UserRepository
) {
 val profile = ProfileComponent(this)
}

class ProfileComponent(
 @Component val main: MainActivityComponent
) {
 val userRepository: UserRepository by di
}

ProfileComponent

MainActivityComponent

create require

🧬 Provided by Parent Component

// main module
class MainActivityComponent(
 @Provides val userRepository: UserRepository
) {
 val profile = ProfileComponent(this)
}

// profile module
class ProfileComponent(
 @Component val main: MainActivityComponent
) {
 val userRepository: UserRepository by di
}

ProfileComponent

MainActivityComponent

create require

🧬 Interface Injection

🧬 Interface Injection
// main-api module
interface MainActivityComponent {
 @get:Provides
 val userRepository: UserRepository
}

// main-impl module
@Provides(MainActivityComponent::class)
class MainActivityComponentImpl(
 override val userRepository: UserRepository
) : MainActivityComponent

// profile module
class ProfileComponent(
 @Component val main: MainActivityComponent
) {
 val userRepository: UserRepository by di
}

ProfileComponent

MainActivityComponent

provide

require

MainActivityComponentImpl

🧬 More Features

🧬 More Features

- Multi-bindings

- Singleton

- ViewModel Injection

- Factory / Lazy / Loadable

🧬 More Features

- Multi-bindings

- Singleton

- ViewModel Injection

- Factory / Lazy / Loadable

@Provides(Repo::class)
class RemoteRepo: Repo

@Provides(Repo::class)
class LocalRepo: Repo

val repos: List<Repo> by di

- Multi-bindings

🧬 More Features

- Multi-bindings

- Singleton

- ViewModel Injection

- Factory / Lazy / Loadable

- Singleton

var i: Int = 1

@Provides
@Singleton
fun provideInt(): Int = i++

val a: Int by di // 1
val b: Int by di // 1

🧬 More Features

- Multi-bindings

- Singleton

- ViewModel Injection

- Factory / Lazy / Loadable

- ViewModel Injection

class FooViewModel
 @KnitViewModel constructor()
: ViewModel()

@Component
class MyFragment : Fragment() {
 val fooVM: FooViewModel
 by knitViewModel()
}

🧬 More Features

- Multi-bindings

- Singleton

- ViewModel Injection

- Factory / Lazy / Loadable- Factory / Lazy / Loadable

@Provides
class Foo

val factory: Factory<Foo> by di
val lazy: Lazy<Foo> by di
val loadable: Loadable<Foo> by di

🧬 More Features

- Multi-bindings

- Singleton

- ViewModel Injection

- Factory / Lazy / Loadable- Factory / Lazy / Loadable

@Provides
class Foo

val factory: () -> Foo by di
val lazy: kotlin.Lazy<Foo> by di
val loadable: Loadable<Foo> by di

🧬 Benefits After Using Knit

🧬 Benefits After Using Knit

Build time reduced by 10%

ANR reduced 388K per month

Package size reduced 1M

🧬 Compare with Hilt

🧬 Compare with Hilt

Source Source
Hilt Dagger

Source
Compiler

Bytecode

🧬 Compare with Hilt

Source Source
Hilt Dagger

Source
CompilerDagger

Source

🧬 Compare with Hilt

Source Source
Hilt Dagger

Source
Compiler

Bytecode

Source
KnitCompiler

Bytecode Bytecode

🧬 Smaller Package

🧬 Smaller Package

Fragment

Module

Hilt

🧬 Smaller Package

Fragment

Module

GeneratedInjector

MemberInjector

Hilt_Fragment

ModuleImpl

ProvideSthFactory

Hilt

🧬 Smaller Package

Fragment

Component

Knit

🧬 Smaller Package

FragmentKnit

🧬 Runtime Performance

🧬 Runtime Performance

Everything Lazily by Default

🧬 Limitations

🧬 Limitations

- Kotlin only

- Not compatible with JSR330 @Inject

- No sources generated

🧬 Future Plans

🧬 Future Plans

- Inject functions

🧬 Future Plans

- Inject functions

@Provides
fun provideFooByKey(key: String): Foo = Foo(key)

class Container {
 val fooFactory: (String) -> Foo by di
}

🧬 Future Plans

- Kotlin Multiplatform support

🧬 Future Plans

- Inlay hint in IDE
class Parent {
 @Provides
 val bar: Bar = ...
}

class Foo {
 @Component
 val parent: Parent = Parent()

 val bar: Bar by di
}

= parent.bar

🧬 Open Source

🧬 Open Source

github.com/tiktok/knit

