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Challenges of Hilt in TikTok



Build Time Impact

of TikTok compilation duration
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Hilt Standardized Hierarchy
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TikTok Hierarchy
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TikTok Hierarchy
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Runtime Loading Overhead

ANR per month

in TikTok

d' TikTok



Package Size

Generatedinjector

Memberlnjector

k Hilt_Fragment J

Modulelmpl

ProvideSthFactory

d' TikTok



What'’s the Ideal DI Pattern?



Fast Flexible

Fast compile-time & Fast runtime Flexible component hierarchy

Safe Minimized

Verity dependency errors Minimal code generated
at compile stage
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What is the basis of DI?



What is the basis of DI?

Producer Consumer
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What is the basis of DI?

DI Framework
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TikTok DI Solution

€3
5 Knit



Knit

@Provides
class UserRepository

class UserService {
val repository: UserRepository by di
}
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& Knit

@Provides
class UserRepository

class UserService {
val repository: UserRepository by di
}
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& Knit

@Provides
c lass UserRepository

class UserService 1
val repository: UserRepository by di
}
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Knit

@Provides
class UserRepository

class UserService {
val repository: UserRepository by di
}
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(ﬁ o
& Knit

@Provides
class UserRepository

class UserService {
val repository: UserRepository by di
}
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After Knit Transform

@Provides class UserRepository

class UserRepository class UserService {

val repository: UserRepository get() {

class UserService A return UserRepository()

val repository: UserRepository by di \

; )
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< Knit

@Provides
class UserRepository

class UserService {
val repository: UserRepository by di

h

After Knit Transform

class UserRepository

class UserService {
val repository: UserRepository get() {
var localRepo = this. _repository
if (localRepo '= null) return localRepo

synchronized(this) {
localRepo = this._repository
if (localRepo '= null) return localRepo
localRepo = UserRepository()
_repository = localRepo
return localRepo

}

}
}
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class UserRepository

class UserService {

val repository: UserRepository get() {
var localRepo = this._repository

if (localRepo '= null) return localRepo
synchronized(this) {

}

}

}

localRepo = this. repository

if (localRepo '= null) return localRepo
localRepo = UserRepository()
_repository = localRepo

return localRepo

.method public final
getRepository()Lknit/demo/UserRepository;
aload @ # "this"
getfield knit/demo/UserService _repository
astore 1 # val localRepo = this._repository
aload 1
ifnonnull :L4

aload 0
monitorenter # synchronized(this)
1 L0
aload 0
getfield knit/demo/UserService _repository
astore 1 # localRepo = this._repository
aload 1
ifnonnull :L3
L1
anew knit/demo/UserRepository
dup
invokespecial knit/demo/UserRepository <init> ()V
astore 1 # localRepo = UserRepository()
12
aload 0
aload 1
putfield knit/demo/UserService _repository
L3
aload 0
monitorexit
L4
aload 1
areturn
.end method
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Knit

@Provides
class UserRepository

class UserService {
val repository: UserRepository by di
}
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& @Provides with Arguments

@Provides
class UserRepository(val userName: String)

class UserService {

@Provides
private fun provideName(): String = “bob”

val repository: UserRepository by di

}
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@Provides with Arguments

@Provides
class UserRepository(val userName: String)

class UserService {

@Provides
private fun provideName(): String = “bob”

val repository: UserRepository by di
—> UserRepository(provideName())
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& Provided by Parent Component



Provided by Parent Component

class MainActivityComponent (
@Provides val userRepository: UserRepository
)

class ProfileComponent (
@Component val main: MainActivityComponent

) 1

val userRepository: UserRepository by di
}
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Provided by Parent Component

class MainActivityComponent (
@Provides val userRepository: UserRepository
)

class ProfileComponent (
@Component val main: MainActivityComponent

) 1

val userRepository: UserRepository by di
—> maln.userRepository
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& Provided by Parent Component

class MainActivityComponent (
@Provides val userRepository: UserRepository
)

MainActivityComponent

class ProfileComponent (

@Component val main: MainActivityComponent
) A :
val userRepository: UserRepository by di ProfileComponent

—> maln.userRepository
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h

class ApplicationComponent (
@Provides val application: Application,
)

class MainActivityComponent (

@Component val appComponent: ApplicationComponent,

@Provides val userRepository: UserRepository,

)

class ProfileComponent (
@Component val main: MainActivityComponent,
) 1

val application: Application by di
val userRepository: UserRepository by di

¥ Provided by Parent Component

ApplicationComponent

MainActivityComponent

ProfileComponent
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& Provided by Parent Component

class MainActivityComponent (
@Provides val userRepository: UserRepository

) {

val profile MainActivityComponent
}

ProfileComponent(this)

T require

class ProfileComponent (
@Component val main: MainActivityComponent

) {

val userRepository: UserRepository by di
}

ProfileComponent
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& Provided by Parent Component

class MainActivityComponent (
@Provides val userRepository: UserRepository

) {

val profile MainActivityComponent
}

ProfileComponent(this)

T require

class ProfileComponent (
@Component val main: MainActivityComponent

) 1

val userRepository: UserRepository by di
}

ProfileComponent
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4’ Interface Injection



4’ Interface Injection

interface MainActivityComponent {
@get:Provides
val userRepository: UserRepository

@Provides(MainActivityComponent::class)
class MainActivityComponentImpl(

override val userRepository: UserRepository
) : MainActivityComponent

class ProfileComponent (
@Component val main: MainActivityComponent

) 1

val userRepository: UserRepository by di
}

MainActivityComponentimpl

provide

MainActivityComponent

require

ProfileComponent
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4 More Features



< More Features

- Multi-bindings
- Singleton
- ViewModel Injection

- Factory / Lazy / Loadable
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<+ More Features

- Multi-bindings
- Singleton
- ViewModel Injection

- Factory / Lazy / Loadable

@Provides(Repo::class)
class RemoteRepo: Repo

@Provides(Repo::class)
class LocalRepo: Repo

val repos: List<Repo> by di
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<’ More Features

- MU|t|'b|nd|ngS var 1* Int =1
- Qi @Provides
SmgletOn @5ingleton

: : : fun provideInt(): Int = i++
- ViewModel Injection
val a: Int by di // 1

- Factory / Lazy / Loadable val b: Int by di /71
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<+ More Features

- Multi-bindings
- Singleton
- ViewModel Injection

- Factory / Lazy / Loadable

class FooViewModel
@KnitViewModel constructor()
+ ViewModel()

@Component
class MyFragment : Fragment() {
val fooVM: FooViewModel
by knitViewModel()
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More Features

- Multi-bindings

@Provides

, class Foo

- Singleton

val factory: Factory<Foo> by di
val lazy: Lazy<Foo> by di

- ViewModel Injection val loadable: Loadable<Foo> by di

- Factory / Lazy / Loadable
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More Features

- Multi-bindings

@Provides

, class Foo

- Singleton

val factory: () —> Foo by di

val lazy: kotlin.Lazy<Foo> by di

- ViewModel Injection val loadable: Loadable<Foo> by di

- Factory / Lazy / Loadable
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& Benefits After Using Knit



4 Benefits After Using Knit

Build time reduced by 10%
ANR reduced 388K per month

Package size reduced ™
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d° Compare with Hilt



& Compare with Hilt
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& Compare with Hilt
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& Smaller Package



" Smaller Package

Filt
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" Smaller Package

Filt

Generatedinjector
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" Smaller Package

Knit
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" Smaller Package

Knit
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<+ Runtime Performance



< Runtime Performance

Everything Lazily by Default



<~ Limitations



< Limitations

- Kotlin only
- Not compatible with JSR330 @Inject

- No sources generated
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o Future Plans



&’ Future Plans

- Inject functions
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Future Plans

- Inject functions

@Provides
fun provideFooByKey(key: String): Foo = Foo(key)

class Container 1
val fooFactory: (String) -> Foo by di
}
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< Future Plans

- Kotlin Multiplatform support
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-
< Future Plans

- Inlay hint in IDE

class Parent {
@Provides
val bar: Bar = ...

}

class Foo {
@Component
val parent: Parent = Parent()

val bar: Bar by di  =parent.bar

F
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4° Open Source



Open Source

-
_t\"
N —\‘"

github.com/tiktok/knit




