
State Space Model Programming in Turing.jl
LAFI 2025

Tim Hargreaves 1 Charles Knipp 2

1Department of Engineering, University of Cambridge, UK

2Federal Reserve Board of Governors, USA

DISCLOSURE
The beliefs presented by the authors are not a reflection of the
Federal Reserve Board or the greater Federal Reserve System

1

State Space Models

X0 X1 X2 X3

Y1 Y2 Y3

· · ·

· · ·

Governed by three distributions:

Initialisation: pθ(x0)
Transition: pθ(xt|xt−1)

Observation: pθ(yt|xt)

Joint distribution of all xt and yt is

pθ(x0:T, y1:T) = pθ(x0)
T∏
t=1

pθ(xt|xt−1)pθ(yt|xt)

2

Filtering

Targeting the posterior distribution pθ(xt|y1:t) is called the filtering
problem, which recursively breaks down into two steps:

Predict: pθ(xt|y1:t−1) =
∫
pθ(xt|xt−1)pθ(xt−1|y1:t−1)dxt−1

Update: pθ(xt|y1:t) ∝ pθ(yt|xt)pθ(xt|y1:t−1)

SMC vs MCMC
Unlike MCMC, the filtered posterior is calculated online. Neither
Turing nor Stan supports this treatment out of the box.

3

A Note on Structure

In a fully modular setting, these posteriors should be able to
produce (1) a sample and (2) a marginal likelihood.

ParticleDistribution
1. Weighted sample of particles
2. Output from the particle filter

GaussianDistribution
1. Analytical sampling
2. Output from the Kalman filter

4

Rao-Blackwellisation

Conditionally
Analytic

X0 X1 X2 X3

Z0 Z1 Z2 Z3

Y1 Y2 Y3

· · ·

· · ·

· · ·

Partially-analytic inference using Rao-Blackwellised particle filter
drastically reduces variance.

Essentially, replaces part of particle state with an entire distribution
and runs the analytic inference algorithm over the particles.

No general purpose implementation exists, until now.
5

Benefits of Interface Design

Arbitrary analytic conditional sub-models can be handled by
dispatching to the inner algorithm.

6

Benchmarks

Benchmarks1 for Rao-Blackwellised Particle Filter on a hierarchical
linear Gaussian model with Douter = Dinner = Dy = 2, Nparticles = 105:

Implementation Mean Time per Filtering Step (ms)
Vanilla CPU 800
StaticArrays.jl 140
torch-kf2 3.1
GPU (CUBLAS) 1.9
GPU (Custom Kernels) 0.4

Developing custom CUDA kernels for fast linear algebra on large
batches of tiny matrices, discussed in future publication.

1CPU: AMD Ryzen Threadripper 7960X 24-Core; GPU: NVIDIA GeForce RTX 4090
2Performing just batch Kalman updates, not full RBPF

7

Design Features

CALLBACKS
At each iteration of the filter, we allow the user to perform any
number of user-defined callbacks

• Storage of filtered states [2]
• Forecasting calculations (smoothed and filtered)
• Calculation of summary statistics

MODULAR RESAMPLING
We have designed a modular resampling framework to encourage
custom resamplers such as the following:

• Differentiable resampling with optimal transport [1]
• Parallel resampling on the GPU [3]

8

Automatic Differentiation

Very difficult because of the recursive nature of SMC.

Currently, we support using ForwardDiff.jl for efficient autodiff.

MOTIVATIONS
• Support for variational filtering algorithms
• Maximum likelihood parameter estimation
• Potential use in Hamiltonian Monte Carlo

9

Target Tracking

Extension that supports multiple-target tracking with (joint)
probabilistic data association.

Soon to add path initialization and deletion to have feature parity
with the Stone Soup framework [4].

10

Particle Markov Chain Monte Carlo

Using AdvancedMH.jl in combination with our framework
(GeneralisedFilters.jl), applying PMMH to a user-defined SSM
is trivial:

1 function density(θ::Vector{T}) where {T<:Real}
2 if insupport(prior_dist, θ)
3 _, ll = GeneralisedFilters.filter(toy_model(θ), algo, data)
4 return ll + logpdf(prior_dist, θ)
5 else
6 return -Inf
7 end
8 end
9

10 # define the sampler
11 pmmh = RWMH(MvNormal(zeros(...), 0.01*I))
12 model = DensityModel(density)
13

14 # run 50,000 draws of PMMH
15 chains = sample(model, pmmh, 50_000)

Particle Gibbs also possible using conditional SMC implementation.
11

References i

A. Corenflos, J. Thornton, G. Deligiannidis, and A. Doucet.
Differentiable particle filtering via entropy-regularized optimal
transport, 2021.
P. E. Jacob, L. M. Murray, and S. Rubenthaler.
Path storage in the particle filter, 2015.
L. M. Murray, A. Lee, and P. E. Jacob.
Parallel resampling in the particle filter, 2016.
P. A. Thomas, J. Barr, B. Balaji, and K. White.
An open source framework for tracking and state estimation
(’stone soup’), 2017.

12

