State Space Model Programming in Turing.jl
LAFI 2025

Tim Hargreaves ' Charles Knipp 2

"Department of Engineering, University of Cambridge, UK

’Federal Reserve Board of Governors, USA

DISCLOSURE .
The beliefs presented by the authors are not a reflection of the

Federal Reserve Board or the greater Federal Reserve System

State Space Models
Governed by three distributions:

Initialisation: py(xo)
Transition: pg(X¢|Xt—1)
Observation: pg(vi|xt)

Joint distribution of all x; and y; is

.
po(Xo.r, var) = Po(Xo) [| po(xtlxi—1)pa(velx:)

=i

Targeting the posterior distribution pgy(xt|y.¢) is called the filtering
problem, which recursively breaks down into two steps:

Predict: po(Xt|yii—1) = J Po(Xt|Xt—1)Po(Xt—1|yr:t—1)dX¢t_1
Update: pg(xc|yr:t) o< po(VelXe)Po(Xe|Va:i—1)

SMC vs MCMC
Unlike MCMC, the filtered posterior is calculated online. Neither

Turing nor Stan supports this treatment out of the box.

A Note on Structure

In a fully modular setting, these posteriors should be able to
produce (1) a sample and (2) a marginal likelihood.

ParticleDistribution GaussianDistribution
1. Weighted sample of particles 1. Analytical sampling
2. Output from the particle filter 2. Output from the Kalman filter

Rao-Blackwellisation

v@@@

Conditionally
Analytic

Partially-analytic inference using Rao-Blackwellised particle filter
drastically reduces variance.

Essentially, replaces part of particle state with an entire distribution
and runs the analytic inference algorithm over the particles.

No general purpose implementation exists, until now.

Benefits of Interface Design

Arbitrary analytic conditional sub-models can be handled by
dispatching to the inner algorithm.

Particle Distribution
Particles Weights

RB Particle
Singular State
Marginalised Marginalised

State |_| |_| State

Predict/ Update (outer) <------ mmmmmmo Predict/Update (inner)
Y Log-likelihood
Particle Distribution
Particles Weights

RB Particle

Singular State
Marginalised Marginalised
State | I | | State

Benchmarks' for Rao-Blackwellised Particle Filter on a hierarchical
linear Gaussian model with Douter = Dinner = Dy = 2, Nparticles = 10°:

Implementation Mean Time per Filtering Step (ms)
Vanilla CPU 800

StaticArrays.jl 140

torch-kf? 3.1

GPU (CUBLAS) 1.9

GPU (Custom Kernels) | 0.4

Developing custom CUDA kernels for fast linear algebra on large
batches of tiny matrices, discussed in future publication.

TCPU: AMD Ryzen Threadripper 7960X 24-Core; GPU: NVIDIA GeForce RTX 4090
Zperforming just batch Kalman updates, not full RBPF

Design Features

CALLBACKS
At each iteration of the filter, we allow the user to perform any

number of user-defined callbacks

- Storage of filtered states [2]
- Forecasting calculations (smoothed and filtered)
- Calculation of summary statistics

MODULAR RESAMPLING _
We have designed a modular resampling framework to encourage

custom resamplers such as the following:

- Differentiable resampling with optimal transport [1]

- Parallel resampling on the GPU [3]

Automatic Differentiation

Very difficult because of the recursive nature of SMC.
Currently, we support using ForwardDiff. j1 for efficient autodiff.
MOTIVATIONS

- Support for variational filtering algorithms

- Maximum likelihood parameter estimation

- Potential use in Hamiltonian Monte Carlo

Target Tracking

Extension that supports multiple-target tracking with (joint)
probabilistic data association.

Trajectories of 7 Objects over 50 Time Steps

Soon to add path initialization and deletion to have feature parity
with the Stone Soup framework [4].

Particle Markov Chain Monte Carlo

Using AdvancedMH. j1 in combination with our framework
(GeneralisedFilters.jl), applying PMMH to a user-defined SSM

is trivial:
1 | function density(0::Vector{T}) where {T<:Real}
2 if insupport(prior_dist, ©)
3 _, 11 = GeneralisedFilters.filter(toy_model(6), algo, data)
4 return 11 + logpdf(prior_dist, ©)
5 else
6 return -Inf
7 end
8 | end
9

10 | # define the sampler
11 | pmmh = RWMH(MvNormal(zeros(...), 0.01xI))
12 | model = DensityModel(density)

14 | # run 50,000 draws of PMMH
15 | chains = sample(model, pmmh, 50_000)

Particle Gibbs also possible using conditional SMC implementation. .

References i

@ A. Corenflos, J. Thornton, G. Deligiannidis, and A. Doucet.
Differentiable particle filtering via entropy-regularized optimal
transport, 2021.

3 P E Jacob, L. M. Murray, and S. Rubenthaler.
Path storage in the particle filter, 2015.

[d L M. Murray, A. Lee, and P. E. Jacob.
Parallel resampling in the particle filter, 2016.

[P A Thomas,). Barr, B. Balaji, and K. White.
An open source framework for tracking and state estimation
('stone soup’), 2017.

