|
| 1 | +from unsloth import FastLanguageModel |
| 2 | +from unsloth.utils.packing import configure_sample_packing, enable_sample_packing |
| 3 | + |
| 4 | +from contextlib import ExitStack |
| 5 | +from types import SimpleNamespace |
| 6 | +from unittest.mock import patch |
| 7 | + |
| 8 | +import pytest |
| 9 | +import torch |
| 10 | +from datasets import Dataset |
| 11 | +from trl import SFTConfig, SFTTrainer |
| 12 | + |
| 13 | + |
| 14 | +def _build_packed_training_setup(tmp_path, device): |
| 15 | + dtype = None |
| 16 | + if device.type == "cuda": |
| 17 | + if torch.cuda.is_bf16_supported(): |
| 18 | + dtype = torch.bfloat16 |
| 19 | + else: |
| 20 | + dtype = torch.float16 |
| 21 | + |
| 22 | + try: |
| 23 | + model, tokenizer = FastLanguageModel.from_pretrained( |
| 24 | + model_name="hf-internal-testing/tiny-random-LlamaForCausalLM", |
| 25 | + max_seq_length=64, |
| 26 | + load_in_4bit=False, |
| 27 | + dtype=dtype, |
| 28 | + ) |
| 29 | + except OSError as exc: # pragma: no cover - offline CI |
| 30 | + pytest.skip(f"Requires access to tiny llama checkpoint: {exc}") |
| 31 | + |
| 32 | + model.to(device) |
| 33 | + |
| 34 | + dataset = Dataset.from_dict( |
| 35 | + { |
| 36 | + "text": [ |
| 37 | + "Hello world!", |
| 38 | + "Short sample.", |
| 39 | + "This is a slightly longer packed example to test batching.", |
| 40 | + "Another response to include in the batch.", |
| 41 | + ] |
| 42 | + } |
| 43 | + ) |
| 44 | + |
| 45 | + training_args = SFTConfig( |
| 46 | + per_device_train_batch_size=2, |
| 47 | + gradient_accumulation_steps=1, |
| 48 | + dataset_text_field="text", |
| 49 | + max_length=64, |
| 50 | + logging_steps=1, |
| 51 | + max_steps=1, |
| 52 | + fp16=device.type == "cuda" and not torch.cuda.is_bf16_supported(), |
| 53 | + bf16=device.type == "cuda" and torch.cuda.is_bf16_supported(), |
| 54 | + dataset_num_proc=1, |
| 55 | + output_dir=str(tmp_path), |
| 56 | + ) |
| 57 | + configure_sample_packing(training_args) |
| 58 | + |
| 59 | + trainer = SFTTrainer( |
| 60 | + model=model, |
| 61 | + processing_class=tokenizer, |
| 62 | + train_dataset=dataset, |
| 63 | + args=training_args, |
| 64 | + ) |
| 65 | + |
| 66 | + enable_sample_packing(model, trainer) |
| 67 | + |
| 68 | + dataloader = trainer.get_train_dataloader() |
| 69 | + batch = next(iter(dataloader)) |
| 70 | + |
| 71 | + model_device = next(model.parameters()).device |
| 72 | + |
| 73 | + for key, value in list(batch.items()): |
| 74 | + if torch.is_tensor(value): |
| 75 | + batch[key] = value.to(model_device) |
| 76 | + |
| 77 | + from unsloth.models import llama as llama_mod |
| 78 | + |
| 79 | + return model, batch, trainer, llama_mod |
| 80 | + |
| 81 | + |
| 82 | +def _trim_batch_to_total_tokens(data, total_tokens): |
| 83 | + def _trim_tensor(t: torch.Tensor): |
| 84 | + if t.ndim >= 2 and t.size(1) > total_tokens: |
| 85 | + return t[:, :total_tokens].contiguous() |
| 86 | + return t |
| 87 | + |
| 88 | + trimmed = {} |
| 89 | + for key, value in data.items(): |
| 90 | + if torch.is_tensor(value): |
| 91 | + trimmed[key] = _trim_tensor(value) |
| 92 | + else: |
| 93 | + trimmed[key] = value |
| 94 | + return trimmed |
| 95 | + |
| 96 | + |
| 97 | +def test_configure_sample_packing(): |
| 98 | + config = SimpleNamespace() |
| 99 | + configure_sample_packing(config) |
| 100 | + |
| 101 | + assert config.packing is True |
| 102 | + assert config.padding_free is True |
| 103 | + assert config.remove_unused_columns is False |
| 104 | + |
| 105 | + |
| 106 | +class _DummyChild(torch.nn.Module): |
| 107 | + def __init__(self): |
| 108 | + super().__init__() |
| 109 | + self.max_seq_length = 8 |
| 110 | + |
| 111 | + |
| 112 | +class _DummyModel(torch.nn.Module): |
| 113 | + def __init__(self): |
| 114 | + super().__init__() |
| 115 | + self.max_seq_length = 16 |
| 116 | + self.child = _DummyChild() |
| 117 | + self.config = SimpleNamespace(_attn_implementation="sdpa") |
| 118 | + self.generation_config = SimpleNamespace(attn_implementation="sdpa") |
| 119 | + |
| 120 | + |
| 121 | +class _DummyCollator: |
| 122 | + def __init__(self): |
| 123 | + self.padding_free = False |
| 124 | + self.return_position_ids = False |
| 125 | + |
| 126 | + def torch_call(self, examples): |
| 127 | + return {"attention_mask": "mask", "batch": examples} |
| 128 | + |
| 129 | + |
| 130 | +class _DummyTrainer: |
| 131 | + def __init__(self): |
| 132 | + self.args = SimpleNamespace(remove_unused_columns=True) |
| 133 | + self.data_collator = _DummyCollator() |
| 134 | + |
| 135 | + |
| 136 | +def test_enable_sample_packing(): |
| 137 | + model = _DummyModel() |
| 138 | + trainer = _DummyTrainer() |
| 139 | + |
| 140 | + enable_sample_packing(model, trainer) |
| 141 | + |
| 142 | + # model hierarchy should now allow packed overlength inputs |
| 143 | + assert getattr(model, "_unsloth_allow_packed_overlength") is True |
| 144 | + assert getattr(model.child, "_unsloth_allow_packed_overlength") is True |
| 145 | + |
| 146 | + # trainer args are updated to keep the packed metadata |
| 147 | + assert trainer.args.remove_unused_columns is False |
| 148 | + |
| 149 | + collator = trainer.data_collator |
| 150 | + assert collator.padding_free is True |
| 151 | + assert collator.return_position_ids is True |
| 152 | + assert getattr(collator, "_unsloth_packing_wrapped") is True |
| 153 | + |
| 154 | + examples = [ |
| 155 | + {"seq_lengths": [2, 1]}, |
| 156 | + {"seq_lengths": [3]}, |
| 157 | + ] |
| 158 | + batch = collator.torch_call(examples) |
| 159 | + |
| 160 | + # packed lengths are aggregated into a single tensor |
| 161 | + assert "packed_seq_lengths" in batch |
| 162 | + assert torch.equal( |
| 163 | + batch["packed_seq_lengths"], |
| 164 | + torch.tensor([2, 1, 3], dtype=torch.int32), |
| 165 | + ) |
| 166 | + |
| 167 | + # attention_mask is dropped when return_position_ids is set |
| 168 | + assert "attention_mask" not in batch |
| 169 | + assert batch["batch"] == examples |
| 170 | + |
| 171 | + |
| 172 | +def test_packing_sdpa(tmp_path): |
| 173 | + device = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu") |
| 174 | + model, batch, trainer, llama_mod = _build_packed_training_setup(tmp_path, device) |
| 175 | + |
| 176 | + assert "packed_seq_lengths" in batch |
| 177 | + assert "attention_mask" not in batch |
| 178 | + assert batch["packed_seq_lengths"].dtype == torch.int32 |
| 179 | + |
| 180 | + total_tokens = batch["input_ids"].size(-1) |
| 181 | + assert int(batch["packed_seq_lengths"].sum().item()) == total_tokens |
| 182 | + |
| 183 | + packed_tokens = int(batch["packed_seq_lengths"].sum().item()) |
| 184 | + inputs = _trim_batch_to_total_tokens(batch, packed_tokens) |
| 185 | + |
| 186 | + seq_info = llama_mod.get_packed_info_from_kwargs( |
| 187 | + {"packed_seq_lengths": batch["packed_seq_lengths"]}, |
| 188 | + inputs["input_ids"].shape[0] * inputs["input_ids"].shape[1], |
| 189 | + inputs["input_ids"].device, |
| 190 | + ) |
| 191 | + assert seq_info is not None |
| 192 | + |
| 193 | + original_mask = llama_mod.build_sdpa_packed_attention_mask |
| 194 | + mask_calls = [] |
| 195 | + |
| 196 | + def _capture_mask(seq_info, dtype, device): |
| 197 | + mask_calls.append(tuple(seq_info[0].tolist())) |
| 198 | + return original_mask(seq_info, dtype=dtype, device=device) |
| 199 | + |
| 200 | + with ExitStack() as stack: |
| 201 | + stack.enter_context(patch.object(llama_mod, "HAS_FLASH_ATTENTION", False)) |
| 202 | + stack.enter_context(patch.object(llama_mod, "HAS_XFORMERS", False)) |
| 203 | + stack.enter_context( |
| 204 | + patch.object( |
| 205 | + llama_mod, |
| 206 | + "build_sdpa_packed_attention_mask", |
| 207 | + side_effect=_capture_mask, |
| 208 | + ) |
| 209 | + ) |
| 210 | + with torch.no_grad(): |
| 211 | + outputs = model(**inputs) |
| 212 | + |
| 213 | + assert mask_calls, "SDPA packed mask was not constructed" |
| 214 | + assert outputs.loss is not None |
| 215 | + |
| 216 | + if hasattr(trainer, "accelerator"): |
| 217 | + trainer.accelerator.free_memory() |
| 218 | + |
0 commit comments