| 
10 | 10 | <a href="https://discord.com/invite/unsloth"><img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/Discord button.png" height="48"></a>  | 
11 | 11 | <a href="https://docs.unsloth.ai"><img src="https://raw.githubusercontent.com/unslothai/unsloth/refs/heads/main/images/Documentation%20Button.png" height="48"></a>  | 
12 | 12 | 
 
  | 
13 |  | -### Finetune Llama 3.3, Mistral, Phi-4, Qwen 2.5 & Gemma 2x faster with 80% less memory!  | 
 | 13 | +### Finetune Llama 3.3, Gemma 3, Phi-4, Qwen 2.5 & Mistral 2x faster with 80% less VRAM!  | 
14 | 14 | 
 
  | 
15 | 15 |   | 
16 | 16 | 
 
  | 
17 | 17 | </div>  | 
18 | 18 | 
 
  | 
19 | 19 | ## ✨ Finetune for Free  | 
20 | 20 | 
 
  | 
21 |  | -All notebooks are **beginner friendly**! Add your dataset, click "Run All", and you'll get a 2x faster finetuned model which can be exported to GGUF, Ollama, vLLM or uploaded to Hugging Face.  | 
 | 21 | +Notebooks are beginner friendly. Read our [guide](https://docs.unsloth.ai/get-started/fine-tuning-guide). Add your dataset, click "Run All", and export your finetuned model to GGUF, Ollama, vLLM or Hugging Face.  | 
22 | 22 | 
 
  | 
23 | 23 | | Unsloth supports | Free Notebooks | Performance | Memory use |  | 
24 | 24 | |-----------|---------|--------|----------|  | 
25 |  | -| **Llama 3.2 (3B)**      | [▶️ Start for free](https://colab.research.google.com/github/unslothai/notebooks/blob/main/nb/Llama3.2_(1B_and_3B)-Conversational.ipynb)               | 2x faster | 70% less |  | 
26 | 25 | | **GRPO (R1 reasoning)**      | [▶️ Start for free](https://colab.research.google.com/github/unslothai/notebooks/blob/main/nb/Llama3.1_(8B)-GRPO.ipynb)               | 2x faster | 80% less |  | 
 | 26 | +| **Gemma 3 (4B)**      | [▶️ Start for free](https://colab.research.google.com/github/unslothai/notebooks/blob/main/nb/Gemma_3_(4B).ipynb)               | 1.6x faster | 60% less |  | 
 | 27 | +| **Llama 3.2 (3B)**      | [▶️ Start for free](https://colab.research.google.com/github/unslothai/notebooks/blob/main/nb/Llama3.2_(1B_and_3B)-Conversational.ipynb)               | 2x faster | 70% less |  | 
27 | 28 | | **Phi-4 (14B)** | [▶️ Start for free](https://colab.research.google.com/github/unslothai/notebooks/blob/main/nb/Phi_4-Conversational.ipynb)               | 2x faster | 70% less |  | 
28 | 29 | | **Llama 3.2 Vision (11B)**      | [▶️ Start for free](https://colab.research.google.com/github/unslothai/notebooks/blob/main/nb/Llama3.2_(11B)-Vision.ipynb)               | 2x faster | 50% less |  | 
29 | 30 | | **Llama 3.1 (8B)**      | [▶️ Start for free](https://colab.research.google.com/github/unslothai/notebooks/blob/main/nb/Llama3.1_(8B)-Alpaca.ipynb)               | 2x faster | 70% less |  | 
30 |  | -| **Gemma 2 (9B)**      | [▶️ Start for free](https://colab.research.google.com/github/unslothai/notebooks/blob/main/nb/Gemma2_(9B)-Alpaca.ipynb)               | 2x faster | 70% less |  | 
31 | 31 | | **Qwen 2.5 (7B)**      | [▶️ Start for free](https://colab.research.google.com/github/unslothai/notebooks/blob/main/nb/Qwen2.5_(7B)-Alpaca.ipynb)               | 2x faster | 70% less |  | 
32 | 32 | | **Mistral v0.3 (7B)**    | [▶️ Start for free](https://colab.research.google.com/github/unslothai/notebooks/blob/main/nb/Mistral_v0.3_(7B)-Conversational.ipynb)               | 2.2x faster | 75% less |  | 
33 | 33 | | **Ollama**     | [▶️ Start for free](https://colab.research.google.com/github/unslothai/notebooks/blob/main/nb/Llama3_(8B)-Ollama.ipynb)               | 1.9x faster | 60% less |  | 
34 | 34 | | **DPO Zephyr**     | [▶️ Start for free](https://colab.research.google.com/github/unslothai/notebooks/blob/main/nb/Zephyr_(7B)-DPO.ipynb)               | 1.9x faster | 50% less |  | 
35 | 35 | 
 
  | 
36 | 36 | - See [all our notebooks](https://docs.unsloth.ai/get-started/unsloth-notebooks) and [all our models](https://docs.unsloth.ai/get-started/all-our-models)  | 
37 |  | -- **Kaggle Notebooks** for [Llama 3.2 Kaggle notebook](https://www.kaggle.com/danielhanchen/kaggle-llama-3-2-1b-3b-unsloth-notebook), [Llama 3.1 (8B)](https://www.kaggle.com/danielhanchen/kaggle-llama-3-1-8b-unsloth-notebook), [Gemma 2 (9B)](https://www.kaggle.com/code/danielhanchen/kaggle-gemma-7b-unsloth-notebook/), [Mistral (7B)](https://www.kaggle.com/code/danielhanchen/kaggle-mistral-7b-unsloth-notebook)  | 
38 |  | -- Run notebooks for [Llama 3.2 conversational](https://colab.research.google.com/github/unslothai/notebooks/blob/main/nb/Llama3.2_(1B_and_3B)-Conversational.ipynb), [Llama 3.1 conversational](https://colab.research.google.com/drive/15OyFkGoCImV9dSsewU1wa2JuKB4-mDE_?usp=sharing) and [Mistral v0.3 ChatML](https://colab.research.google.com/drive/15F1xyn8497_dUbxZP4zWmPZ3PJx1Oymv?usp=sharing)  | 
39 |  | -- This [continued pretraining notebook](https://colab.research.google.com/github/unslothai/notebooks/blob/main/nb/Mistral_v0.3_(7B)-CPT.ipynb) is for learning another language  | 
40 |  | -- Click [here](https://docs.unsloth.ai/) for detailed documentation for Unsloth.  | 
 | 37 | +- **Kaggle Notebooks** for [Llama 3.2 Kaggle notebook](https://www.kaggle.com/danielhanchen/kaggle-llama-3-2-1b-3b-unsloth-notebook), [Llama 3.1 (8B)](https://www.kaggle.com/danielhanchen/kaggle-llama-3-1-8b-unsloth-notebook), [Phi-4 (14B)](https://www.kaggle.com/code/danielhanchen/phi-4-finetuning-unsloth-notebook), [Mistral (7B)](https://www.kaggle.com/code/danielhanchen/kaggle-mistral-7b-unsloth-notebook)  | 
 | 38 | +- See detailed documentation for Unsloth [here](https://docs.unsloth.ai/).  | 
41 | 39 | 
 
  | 
42 | 40 | ## ⚡ Quickstart  | 
43 | 41 | 
 
  | 
44 | 42 | - **Install with pip (recommended)** for Linux devices:  | 
45 | 43 | ```  | 
46 | 44 | pip install unsloth  | 
47 | 45 | ```  | 
48 |  | -For Windows install instructions, see [here](https://github.com/unslothai/unsloth/edit/main/README.md#windows-installation).  | 
 | 46 | +For Windows install instructions, see [here](https://docs.unsloth.ai/get-started/installing-+-updating/windows-installation).  | 
49 | 47 | 
 
  | 
50 | 48 | ## 🦥 Unsloth.ai News  | 
51 |  | -- 📣 NEW! Introducing Long-context [Reasoning (GRPO)](https://unsloth.ai/blog/grpo) in Unsloth. You can now reproduce DeepSeek-R1's "aha" moment with just 5GB VRAM. Transform Llama, Phi, Mistral etc. into reasoning LLMs!  | 
52 |  | -- 📣 NEW! [DeepSeek-R1](https://unsloth.ai/blog/deepseek-r1) - the most powerful open reasoning models with Llama & Qwen distillations. Run or fine-tune them now! More details: [unsloth.ai/blog/deepseek-r1](https://unsloth.ai/blog/deepseek-r1). All model uploads: [here](https://huggingface.co/collections/unsloth/deepseek-r1-all-versions-678e1c48f5d2fce87892ace5).  | 
53 |  | -- 📣 NEW! [Phi-4](https://unsloth.ai/blog/phi4) by Microsoft is now supported. We also [fixed bugs](https://unsloth.ai/blog/phi4) in Phi-4 and [uploaded GGUFs, 4-bit](https://huggingface.co/collections/unsloth/phi-4-all-versions-677eecf93784e61afe762afa). Try the [Phi-4 Colab notebook](https://colab.research.google.com/github/unslothai/notebooks/blob/main/nb/Phi_4-Conversational.ipynb)  | 
 | 49 | +- 📣 NEW! [**EVERYTHING** is now supported](https://unsloth.ai/blog/gemma3#everything) incuding: full finetuning, pretraining, ALL models (Mixtral, MOE, Cohere, Mamba) and all training algorithms (KTO, DoRA) etc. MultiGPU support coming very soon.  | 
 | 50 | +- 📣 NEW! **Gemma 3** by Google: [Read Blog](https://unsloth.ai/blog/gemma3). We [uploaded GGUFs, 4-bit models](https://huggingface.co/collections/unsloth/phi-4-all-versions-677eecf93784e61afe762afa). Try the [Gemma 3 (4B) Colab notebook](https://colab.research.google.com/github/unslothai/notebooks/blob/main/nb/Gemma_3.ipynb)  | 
 | 51 | +- 📣 NEW! Introducing Long-context [Reasoning (GRPO)](https://unsloth.ai/blog/grpo) in Unsloth. Train your own reasoning model with just 5GB VRAM. Transform Llama, Phi, Mistral etc. into reasoning LLMs!  | 
 | 52 | +- 📣 NEW! [DeepSeek-R1](https://unsloth.ai/blog/deepseek-r1) - the most powerful open reasoning models with Llama & Qwen distillations. Run or fine-tune them now [with our guide](https://unsloth.ai/blog/deepseek-r1). All model uploads: [here](https://huggingface.co/collections/unsloth/deepseek-r1-all-versions-678e1c48f5d2fce87892ace5).  | 
 | 53 | +- 📣 NEW! [Phi-4](https://unsloth.ai/blog/phi4) by Microsoft: We also [fixed bugs](https://unsloth.ai/blog/phi4) in Phi-4 and [uploaded GGUFs, 4-bit](https://huggingface.co/collections/unsloth/phi-4-all-versions-677eecf93784e61afe762afa). Try the [Phi-4 Colab notebook](https://colab.research.google.com/github/unslothai/notebooks/blob/main/nb/Phi_4-Conversational.ipynb)  | 
54 | 54 | - 📣 NEW! [Llama 3.3 (70B)](https://huggingface.co/collections/unsloth/llama-33-all-versions-67535d7d994794b9d7cf5e9f), Meta's latest model is supported.  | 
55 |  | -- 📣 NEW! We worked with Apple to add [Cut Cross Entropy](https://arxiv.org/abs/2411.09009). Unsloth now supports 89K context for Meta's Llama 3.3 (70B) on a 80GB GPU - 13x longer than HF+FA2. For Llama 3.1 (8B), Unsloth enables 342K context, surpassing its native 128K support.  | 
56 | 55 | - 📣 Introducing Unsloth [Dynamic 4-bit Quantization](https://unsloth.ai/blog/dynamic-4bit)! We dynamically opt not to quantize certain parameters and this greatly increases accuracy while only using <10% more VRAM than BnB 4-bit. See our collection on [Hugging Face here.](https://huggingface.co/collections/unsloth/unsloth-4-bit-dynamic-quants-67503bb873f89e15276c44e7)  | 
57 | 56 | - 📣 [Vision models](https://unsloth.ai/blog/vision) now supported! [Llama 3.2 Vision (11B)](https://colab.research.google.com/github/unslothai/notebooks/blob/main/nb/Llama3.2_(11B)-Vision.ipynb), [Qwen 2.5 VL (7B)](https://colab.research.google.com/github/unslothai/notebooks/blob/main/nb/Qwen2_VL_(7B)-Vision.ipynb) and [Pixtral (12B) 2409](https://colab.research.google.com/github/unslothai/notebooks/blob/main/nb/Pixtral_(12B)-Vision.ipynb)  | 
58 | 57 | <details>  | 
59 | 58 |   <summary>Click for more news</summary>  | 
60 |  | -    | 
 | 59 | + | 
 | 60 | +- 📣 NEW! We worked with Apple to add [Cut Cross Entropy](https://arxiv.org/abs/2411.09009). Unsloth now supports 89K context for Meta's Llama 3.3 (70B) on a 80GB GPU - 13x longer than HF+FA2. For Llama 3.1 (8B), Unsloth enables 342K context, surpassing its native 128K support.  | 
61 | 61 | - 📣 We found and helped fix a [gradient accumulation bug](https://unsloth.ai/blog/gradient)! Please update Unsloth and transformers.  | 
62 | 62 | - 📣 Try out [Chat interface](https://colab.research.google.com/github/unslothai/notebooks/blob/main/nb/Unsloth_Studio.ipynb)!  | 
63 | 63 | - 📣 NEW! Qwen-2.5 including [Coder](https://unsloth.ai/blog/qwen-coder) models are now supported with bugfixes. 14b fits in a Colab GPU! [Qwen 2.5 conversational notebook](https://colab.research.google.com/github/unslothai/notebooks/blob/main/nb/Qwen2.5_Coder_(14B)-Conversational.ipynb)  | 
@@ -103,7 +103,7 @@ See [here](https://github.com/unslothai/unsloth/edit/main/README.md#advanced-pip  | 
103 | 103 |   You should install the latest version of your GPUs driver. Download drivers here: [NVIDIA GPU Drive](https://www.nvidia.com/Download/index.aspx).  | 
104 | 104 | 
 
  | 
105 | 105 | 3. **Install Visual Studio C++:**  | 
106 |  | -   You will need Visual Studio, with C++ installed. By default, C++ is not installed with [Visual Studio](https://visualstudio.microsoft.com/vs/community/), so make sure you select all of the C++ options. Also select options for Windows 10/11 SDK. For more detailed instructions, see [here](https://docs.unsloth.ai/get-started/installing-+-updating).  | 
 | 106 | +   You will need Visual Studio, with C++ installed. By default, C++ is not installed with [Visual Studio](https://visualstudio.microsoft.com/vs/community/), so make sure you select all of the C++ options. Also select options for Windows 10/11 SDK. For detailed instructions with options, see [here](https://docs.unsloth.ai/get-started/installing-+-updating).  | 
107 | 107 | 
 
  | 
108 | 108 | 5. **Install CUDA Toolkit:**  | 
109 | 109 |    Follow the instructions to install [CUDA Toolkit](https://developer.nvidia.com/cuda-toolkit-archive).  | 
 | 
0 commit comments