|
| 1 | +# -*- coding: utf-8 -*- |
| 2 | + |
| 3 | +from unsloth import FastVisionModel |
| 4 | + |
| 5 | +import torch |
| 6 | +from qwen_vl_utils import process_vision_info |
| 7 | +import os |
| 8 | +from datasets import load_dataset |
| 9 | +from trl import SFTTrainer, SFTConfig |
| 10 | + |
| 11 | +import sys |
| 12 | +from pathlib import Path |
| 13 | + |
| 14 | + |
| 15 | +REPO_ROOT = Path(__file__).parents[3] |
| 16 | +sys.path.insert(0, str(REPO_ROOT)) |
| 17 | + |
| 18 | +from tests.utils.cleanup_utils import safe_remove_directory |
| 19 | +from tests.utils.ocr_eval import OCRModelEvaluator |
| 20 | + |
| 21 | + |
| 22 | +## Dataset Preparation |
| 23 | +from datasets import load_dataset |
| 24 | + |
| 25 | +dataset = load_dataset("lbourdois/OCR-liboaccn-OPUS-MIT-5M-clean", 'en', split="train") |
| 26 | +# To select the first 2000 examples |
| 27 | +train_dataset = dataset.select(range(2000)) |
| 28 | + |
| 29 | +# To select the next 200 examples for evaluation |
| 30 | +eval_dataset = dataset.select(range(2000, 2200)) |
| 31 | + |
| 32 | +# Convert dataset to OAI messages |
| 33 | +def format_data(sample): |
| 34 | + return {"messages": [ |
| 35 | + { |
| 36 | + "role": "system", |
| 37 | + "content": [{"type": "text", "text": system_message}], |
| 38 | + }, |
| 39 | + { |
| 40 | + "role": "user", |
| 41 | + "content": [ |
| 42 | + { |
| 43 | + "type": "text", |
| 44 | + "text": sample["question"], |
| 45 | + },{ |
| 46 | + "type": "image", |
| 47 | + "image": sample["image"], |
| 48 | + } |
| 49 | + ], |
| 50 | + }, |
| 51 | + { |
| 52 | + "role": "assistant", |
| 53 | + "content": [{"type": "text", "text": sample["answer"]}], |
| 54 | + }, |
| 55 | + ], |
| 56 | + } |
| 57 | + |
| 58 | +system_message = "You are an expert french ocr system." |
| 59 | +# Convert dataset to OAI messages |
| 60 | +# need to use list comprehension to keep Pil.Image type, .mape convert image to bytes |
| 61 | +train_dataset = [format_data(sample) for sample in train_dataset] |
| 62 | +eval_dataset = [format_data(sample) for sample in eval_dataset] |
| 63 | + |
| 64 | +## Setup OCR main evaluation function and helpers |
| 65 | +import os |
| 66 | +import torch |
| 67 | +from tqdm import tqdm |
| 68 | +import pandas as pd |
| 69 | +from jiwer import wer, cer |
| 70 | +from qwen_vl_utils import process_vision_info |
| 71 | + |
| 72 | +# |
| 73 | +ocr_evaluator = OCRModelEvaluator() |
| 74 | +model_comparison_results = {} |
| 75 | + |
| 76 | +## Finetuning Setup and Run |
| 77 | +# Load Base Model |
| 78 | + |
| 79 | +model, tokenizer = FastVisionModel.from_pretrained( |
| 80 | + model_name = "unsloth/Qwen2.5-VL-32B-Instruct-bnb-4bit", |
| 81 | + max_seq_length = 2048, # Choose any for long context! |
| 82 | + load_in_4bit = True, # 4 bit quantization to reduce memory |
| 83 | + load_in_8bit = False, # [NEW!] A bit more accurate, uses 2x memory |
| 84 | + full_finetuning = False, # [NEW!] We have full finetuning now! |
| 85 | +) |
| 86 | + |
| 87 | +# benchmark base model performance |
| 88 | +model_name = "Unsloth Base model" |
| 89 | +FastVisionModel.for_inference(model) |
| 90 | +avg_wer, avg_cer = ocr_evaluator.evaluate_model(model, tokenizer, eval_dataset, output_dir="unsloth_base_model_results") |
| 91 | +ocr_evaluator.add_to_comparison(model_name, avg_wer, avg_cer) |
| 92 | + |
| 93 | +## Lora Finetuning |
| 94 | +model = FastVisionModel.get_peft_model( |
| 95 | + model, |
| 96 | + finetune_vision_layers = True, # Turn off for just text! |
| 97 | + finetune_language_layers = True, # Should leave on! |
| 98 | + finetune_attention_modules = True, # Attention good for GRPO |
| 99 | + finetune_mlp_modules = True, # SHould leave on always! |
| 100 | + |
| 101 | + r = 16, # Choose any number > 0 ! Suggested 8, 16, 32, 64, 128 |
| 102 | + #target_modules = ["q_proj", "k_proj", "v_proj", "o_proj", |
| 103 | + #"gate_proj", "up_proj", "down_proj",], |
| 104 | + lora_alpha = 32, |
| 105 | + lora_dropout = 0, # Supports any, but = 0 is optimized |
| 106 | + bias = "none", # Supports any, but = "none" is optimized |
| 107 | + # [NEW] "unsloth" uses 30% less VRAM, fits 2x larger batch sizes! |
| 108 | + use_gradient_checkpointing = "unsloth", # True or "unsloth" for very long context |
| 109 | + random_state = 3407, |
| 110 | + use_rslora = False, # We support rank stabilized LoRA |
| 111 | + loftq_config = None, # And LoftQ |
| 112 | +) |
| 113 | + |
| 114 | +from unsloth import is_bf16_supported |
| 115 | +from unsloth.trainer import UnslothVisionDataCollator |
| 116 | +FastVisionModel.for_training(model) # Enable for training! |
| 117 | +model.config.use_cache = False |
| 118 | + |
| 119 | + |
| 120 | +trainer = SFTTrainer( |
| 121 | + model = model, |
| 122 | + tokenizer = tokenizer, |
| 123 | + data_collator = UnslothVisionDataCollator(model, tokenizer), |
| 124 | + train_dataset = train_dataset, |
| 125 | + args = SFTConfig( |
| 126 | + #per_device_train_batch_size = 4, |
| 127 | + #gradient_accumulation_steps = 8, |
| 128 | + per_device_train_batch_size = 2, |
| 129 | + gradient_accumulation_steps = 4, |
| 130 | + gradient_checkpointing=True, |
| 131 | + gradient_checkpointing_kwargs = {"use_reentrant": False}, # use reentrant checkpointing |
| 132 | + max_grad_norm=0.3, # max gradient norm based on QLoRA paper |
| 133 | + warmup_ratio=0.03, |
| 134 | + #num_train_epochs = 2, # Set this instead of max_steps for full training runs |
| 135 | + max_steps=60, |
| 136 | + learning_rate = 2e-4, |
| 137 | + fp16 = not is_bf16_supported(), |
| 138 | + bf16 = is_bf16_supported(), |
| 139 | + logging_steps = 5, |
| 140 | + save_strategy="epoch", |
| 141 | + optim = "adamw_torch_fused", |
| 142 | + weight_decay = 0.01, |
| 143 | + lr_scheduler_type = "linear", |
| 144 | + seed = 3407, |
| 145 | + output_dir = "unsloth-qwen2.5-vl-32b-french-ocr-checkpoints", |
| 146 | + report_to = "none", # For Weights and Biases |
| 147 | + |
| 148 | + # You MUST put the below items for vision finetuning: |
| 149 | + remove_unused_columns = False, |
| 150 | + dataset_text_field = "", |
| 151 | + dataset_kwargs = {"skip_prepare_dataset": True}, |
| 152 | + dataset_num_proc = 4, |
| 153 | + max_seq_length = 2048, |
| 154 | + ), |
| 155 | +) |
| 156 | + |
| 157 | +# run training |
| 158 | +trainer_stats = trainer.train() |
| 159 | + |
| 160 | +model.save_pretrained("unsloth-qwen2.5-vl-32b-french-ocr-adapter", tokenizer) |
| 161 | +tokenizer.save_pretrained("unsloth-qwen2.5-vl-32b-french-ocr-adapter") |
| 162 | + |
| 163 | +## Measure Adapter Performance |
| 164 | + |
| 165 | +# benchmark lora model performance |
| 166 | +model_name = "Unsloth lora adapter model" |
| 167 | +FastVisionModel.for_inference(model) |
| 168 | +avg_wer, avg_cer = ocr_evaluator.evaluate_model(model, tokenizer, eval_dataset, output_dir="unsloth_lora_model_results") |
| 169 | +ocr_evaluator.add_to_comparison(model_name, avg_wer, avg_cer) |
| 170 | + |
| 171 | +## Merge Model |
| 172 | + |
| 173 | +def find_lora_base_model(model_to_inspect): |
| 174 | + current = model_to_inspect |
| 175 | + if hasattr(current, "base_model"): |
| 176 | + current = current.base_model |
| 177 | + if hasattr(current, "model"): |
| 178 | + current = current.model |
| 179 | + return current |
| 180 | +pass |
| 181 | + |
| 182 | +base = find_lora_base_model(model) |
| 183 | + |
| 184 | +print((base.__class__.__name__)) |
| 185 | + |
| 186 | +# merge default 16 bits |
| 187 | +model.save_pretrained_merged(save_directory="qwen2.5-ocr-merged-finetune-merge-16bit", tokenizer=tokenizer) |
| 188 | + |
| 189 | + |
| 190 | +## Benchmark merged model performance |
| 191 | + |
| 192 | +### 16 bits merged model |
| 193 | + |
| 194 | +model, tokenizer = FastVisionModel.from_pretrained("./qwen2.5-ocr-merged-finetune-merge-16bit",load_in_4bit=False, load_in_8bit=False) |
| 195 | + |
| 196 | +# benchmark 4bit loaded, 16bits merged model performance |
| 197 | +model_name = "Unsloth 16bits-merged model load-16bits" |
| 198 | +model.config.use_cache = True |
| 199 | + |
| 200 | +avg_wer, avg_cer = ocr_evaluator.evaluate_model(model, tokenizer, eval_dataset, output_dir="unsloth_16bits_merged_model_load_16bits_results") |
| 201 | +ocr_evaluator.add_to_comparison(model_name, avg_wer, avg_cer) |
| 202 | + |
| 203 | +# load 16bits-merged model in 4 bits |
| 204 | +model, tokenizer = FastVisionModel.from_pretrained("./qwen2.5-ocr-merged-finetune-merge-16bit",load_in_4bit=True, load_in_8bit=False) |
| 205 | + |
| 206 | +# benchmark 4bit loaded, 16bits merged model performance |
| 207 | +model_name = "Unsloth 16bits-merged model load-4bits" |
| 208 | +model.config.use_cache = True |
| 209 | + |
| 210 | +avg_wer, avg_cer = ocr_evaluator.evaluate_model(model, tokenizer, eval_dataset, output_dir="unsloth_16bits_merged_model_load_4bits_results") |
| 211 | +ocr_evaluator.add_to_comparison(model_name, avg_wer, avg_cer) |
| 212 | + |
| 213 | +# load model in 8 bits |
| 214 | +model, tokenizer = FastVisionModel.from_pretrained("./qwen2.5-ocr-merged-finetune-merge-16bit",load_in_4bit=False, load_in_8bit=True) |
| 215 | + |
| 216 | +# benchmark 4bit loaded, 16bits merged model performance |
| 217 | +model_name = "Unsloth 16bits-merged model load-8bits" |
| 218 | +avg_wer, avg_cer = ocr_evaluator.evaluate_model(model, tokenizer, eval_dataset, output_dir="unsloth_16bits_merged_model_load_8bits_results") |
| 219 | +ocr_evaluator.add_to_comparison(model_name, avg_wer, avg_cer) |
| 220 | + |
| 221 | +# """### 4 bits merged model""" |
| 222 | +# |
| 223 | +# # load 4bits-merged model in 4 bits |
| 224 | +# model, tokenizer = FastVisionModel.from_pretrained("./qwen2-ocr-merged-finetune-merge-4bit",load_in_4bit=True, load_in_8bit=False) |
| 225 | +# |
| 226 | +# # benchmark 4bit loaded, 4bits merged model performance |
| 227 | +# model_name = "Unsloth 4bits-merged model load-4bits" |
| 228 | +# |
| 229 | +# avg_wer, avg_cer = ocr_evaluator.evaluate_model(model, tokenizer, eval_dataset, output_dir="unsloth_4bits_merged_model_load_4bits_results") |
| 230 | +# ocr_evaluator.add_to_comparison(model_name, avg_wer, avg_cer) |
| 231 | +# |
| 232 | +# # load model in 8 bits |
| 233 | +# model, tokenizer = FastVisionModel.from_pretrained("./qwen2-ocr-merged-finetune-merge-4bit",load_in_4bit=False, load_in_8bit=True) |
| 234 | +# |
| 235 | +# # benchmark 8bit loaded, 4bits merged model performance |
| 236 | +# model_name = "Unsloth 4bits-merged model load-8bits" |
| 237 | +# |
| 238 | +# avg_wer, avg_cer = ocr_evaluator.evaluate_model(model, tokenizer, eval_dataset, output_dir="unsloth_4bits_merged_model_load_8bits_results") |
| 239 | +# ocr_evaluator.add_to_comparison(model_name, avg_wer, avg_cer) |
| 240 | + |
| 241 | +# Model comparison report |
| 242 | +#print model comparison |
| 243 | +ocr_evaluator.print_model_comparison() |
| 244 | + |
| 245 | + |
| 246 | + |
| 247 | +# Final cleanup |
| 248 | +print("\n🧹 Cleaning up temporary files...") |
| 249 | +safe_remove_directory("./unsloth-qwen2.5-vl-32b-french-ocr-adapter") |
| 250 | +safe_remove_directory("./unsloth-qwen2.5-vl-32b-french-ocr-checkpoints") |
| 251 | +safe_remove_directory("./unsloth_compiled_cache") |
| 252 | +safe_remove_directory("./qwen2.5-ocr-merged-finetune-merge-16bit") |
| 253 | + |
| 254 | +print("\n🎯 Pipeline completed successfully!") |
| 255 | +print("=" * 80) |
0 commit comments