Demos are available at: https://thuhcsi.github.io/LightGrad/
Install python 3.10.
Then, run:
git clone --recursive https://github.com/thuhcsi/LightGrad.git
python -m pip install -r requirements.txtDownload dataset from url. Run
python preprocess.py bznsyp [PATH_TO_DIRECTORY_CONTAINING_DATASET] \
[PATH_TO_DIRECTORY_FOR_SAVING_PREPROCESS_RESULTS] \
--test_sample_count 200 --valid_sample_count 200This will produce phn2id.json, train_dataset.json, test_dataset.json, valid_dataset.json in [PATH_TO_DIRECTORY_FOR_SAVING_PREPROCESS_RESULTS].
Download dataset from url. Run
python preprocess.py ljspeech [PATH_TO_DIRECTORY_CONTAINING_DATASET] \
[PATH_TO_DIRECTORY_FOR_SAVING_PREPROCESS_RESULTS] \
--test_sample_count 200 --valid_sample_count 200This will produce phn2id.json, train_dataset.json, test_dataset.json, valid_dataset.json in [PATH_TO_DIRECTORY_FOR_SAVING_PREPROCESS_RESULTS].
Edit config/bznsyp_config.yaml, set train_datalist_path, valid_datalist_path, phn2id_path and log_dir.
Run:
python train.py -c config/bznsyp_config.yamlEdit config/ljspeech_config.yaml, set train_datalist_path, valid_datalist_path, phn2id_path and log_dir.
Run:
python train.py -c config/ljspeech_config.yamlEdit inference.ipynb.
Set HiFiGAN_CONFIG, HiFiGAN_ckpt and ckpt_path to corresponding files, respectively.
- Note:
add_blankininference.ipynbshould be the same as that inLightGrad/dataset.py.