Skip to content

Commit 58a59d0

Browse files
shivasuryaclaude
andauthored
cpf/enhancement: Add Callgraph Integration into parsing pipeline (#330)
* feat: Add core data structures for call graph (PR #1) Add foundational data structures for Python call graph construction: New Types: - CallSite: Represents function call locations with arguments and resolution status - CallGraph: Maps functions to callees with forward/reverse edges - ModuleRegistry: Maps Python file paths to module paths - ImportMap: Tracks imports per file for name resolution - Location: Source code position tracking - Argument: Function call argument metadata Features: - 100% test coverage with comprehensive unit tests - Bidirectional call graph edges (forward and reverse) - Support for ambiguous short names in module registry - Helper functions for module path manipulation This establishes the foundation for 3-pass call graph algorithm: - Pass 1 (next PR): Module registry builder - Pass 2 (next PR): Import extraction and resolution - Pass 3 (next PR): Call graph construction Related: Phase 1 - Call Graph Construction & 3-Pass Algorithm 🤖 Generated with [Claude Code](https://claude.com/claude-code) Co-Authored-By: Claude <[email protected]> * feat: Implement module registry - Pass 1 of 3-pass algorithm (PR #2) Implement the first pass of the call graph construction algorithm: building a complete registry of Python modules by walking the directory tree. New Features: - BuildModuleRegistry: Walks directory tree and maps file paths to module paths - convertToModulePath: Converts file system paths to Python import paths - shouldSkipDirectory: Filters out venv, __pycache__, build dirs, etc. Module Path Conversion: - Handles regular files: myapp/views.py → myapp.views - Handles packages: myapp/utils/__init__.py → myapp.utils - Supports deep nesting: myapp/api/v1/endpoints/users.py → myapp.api.v1.endpoints.users - Cross-platform: Normalizes Windows/Unix path separators Performance Optimizations: - Skips 15+ common non-source directories (venv, __pycache__, .git, dist, build, etc.) - Avoids scanning thousands of dependency files - Indexes both full module paths and short names for ambiguity detection Test Coverage: 93% - Comprehensive unit tests for all conversion scenarios - Integration tests with real Python project structure - Edge case handling: empty dirs, non-Python files, deep nesting, permissions - Error path testing: walk errors, invalid paths, system errors - Test fixtures: test-src/python/simple_project/ with realistic structure - Documented: Remaining 7% are untestable OS-level errors (filepath.Abs failures) This establishes Pass 1 of 3: - ✅ Pass 1: Module registry (this PR) - Next: Pass 2 - Import extraction and resolution - Next: Pass 3 - Call graph construction Related: Phase 1 - Call Graph Construction & 3-Pass Algorithm Base Branch: shiva/callgraph-infra-1 (PR #1) 🤖 Generated with [Claude Code](https://claude.com/claude-code) Co-Authored-By: Claude <[email protected]> * feat: Implement import extraction with tree-sitter - Pass 2 Part A This PR implements comprehensive import extraction for Python code using tree-sitter AST parsing. It handles all three main import styles: 1. Simple imports: `import module` 2. From imports: `from module import name` 3. Aliased imports: `import module as alias` and `from module import name as alias` The implementation uses direct AST traversal instead of tree-sitter queries for better compatibility and control. It properly handles: - Multiple imports per line (`from json import dumps, loads`) - Nested module paths (`import xml.etree.ElementTree`) - Whitespace variations - Invalid/malformed syntax (fault-tolerant parsing) Key functions: - ExtractImports(): Main entry point that parses code and builds ImportMap - traverseForImports(): Recursively traverses AST to find import statements - processImportStatement(): Handles simple and aliased imports - processImportFromStatement(): Handles from-import statements with proper module name skipping to avoid duplicate entries Test coverage: 92.8% overall, 90-95% for import extraction functions Test fixtures include: - simple_imports.py: Basic import statements - from_imports.py: From import statements with multiple names - aliased_imports.py: Aliased imports (both simple and from) - mixed_imports.py: Mixed import styles All tests passing, linting clean, builds successfully. This is Pass 2 Part A of the 3-pass call graph algorithm. 🤖 Generated with [Claude Code](https://claude.com/claude-code) Co-Authored-By: Claude <[email protected]> * feat: Implement relative import resolution - Pass 2 Part B This PR implements comprehensive relative import resolution for Python using a 3-pass algorithm. It extends the import extraction system from PR #3 to handle Python's relative import syntax with dot notation. Key Changes: 1. **Added FileToModule reverse mapping to ModuleRegistry** - Enables O(1) lookup from file path to module path - Required for resolving relative imports - Updated AddModule() to maintain bidirectional mapping 2. **Implemented resolveRelativeImport() function** - Handles single dot (.) for current package - Handles multiple dots (.., ...) for parent/grandparent packages - Navigates package hierarchy using module path components - Clamps excessive dots to root package level - Falls back gracefully when file not in registry 3. **Enhanced processImportFromStatement() for relative imports** - Detects relative_import nodes in tree-sitter AST - Extracts import_prefix (dots) and optional module suffix - Resolves relative paths to absolute module paths before adding to ImportMap 4. **Comprehensive test coverage (94.5% overall)** - Unit tests for resolveRelativeImport with various dot counts - Integration tests with ExtractImports - Tests for deeply nested packages - Tests for mixed absolute and relative imports - Real fixture files with project structure Relative Import Examples: - `from . import utils` → "currentpackage.utils" - `from .. import config` → "parentpackage.config" - `from ..utils import helper` → "parentpackage.utils.helper" - `from ...db import query` → "grandparent.db.query" Test Fixtures: - Created myapp/submodule/handler.py with all relative import styles - Created supporting package structure with __init__.py files - Tests verify correct resolution across package hierarchy All tests passing, linting clean, builds successfully. This is Pass 2 Part B of the 3-pass call graph algorithm. 🤖 Generated with [Claude Code](https://claude.com/claude-code) Co-Authored-By: Claude <[email protected]> * feat: Implement call site extraction from AST - Pass 2 Part C This PR implements call site extraction from Python source code using tree-sitter AST parsing. It builds on the import resolution work from PRs #3 and #4 to prepare for call graph construction in Pass 3. ## Changes ### Core Implementation (callsites.go) 1. **ExtractCallSites()**: Main entry point for extracting call sites - Parses Python source with tree-sitter - Traverses AST to find all call expressions - Returns slice of CallSite objects with location information 2. **traverseForCalls()**: Recursive AST traversal - Tracks function context while traversing - Updates context when entering function definitions - Finds and processes call expressions 3. **processCallExpression()**: Call site processing - Extracts callee name (function/method being called) - Parses arguments (positional and keyword) - Creates CallSite with source location - Parameters for importMap and caller reserved for Pass 3 4. **extractCalleeName()**: Callee name extraction - Handles simple identifiers: foo() - Handles attributes: obj.method(), obj.attr.method() - Recursively builds dotted names 5. **extractArguments()**: Argument parsing - Extracts all positional arguments - Preserves keyword arguments as "name=value" in Value field - Tracks argument position and variable status 6. **convertArgumentsToSlice()**: Helper for struct conversion - Converts []*Argument to []Argument for CallSite struct ### Comprehensive Tests (callsites_test.go) Created 17 test functions covering: - Simple function calls: foo(), bar() - Method calls: obj.method(), self.helper() - Arguments: positional, keyword, mixed - Nested calls: foo(bar(x)) - Multiple functions in one file - Class methods - Chained calls: obj.method1().method2() - Module-level calls (no function context) - Source location tracking - Empty files - Complex arguments: expressions, lists, dicts, lambdas - Nested method calls: obj.attr.method() - Real file fixture integration ### Test Fixture (simple_calls.py) Created realistic test file with: - Function definitions with various call patterns - Method calls on objects - Calls with arguments (positional and keyword) - Nested calls - Class methods with self references ## Test Coverage - Overall: 93.3% - ExtractCallSites: 90.0% - traverseForCalls: 93.3% - processCallExpression: 83.3% - extractCalleeName: 91.7% - extractArguments: 87.5% - convertArgumentsToSlice: 100.0% ## Design Decisions 1. **Keyword argument handling**: Store as "name=value" in Value field - Tree-sitter provides full keyword_argument node content - Preserves complete argument information for later analysis - Separating name/value would require additional parsing 2. **Caller context tracking**: Parameter reserved but not used yet - Will be populated in Pass 3 during call graph construction - Enables linking call sites to their containing functions 3. **Import map parameter**: Reserved for Pass 3 resolution - Will be used to resolve qualified names to FQNs - Enables cross-file call graph construction 4. **Location tracking**: Store exact position for each call site - File, line, column information - Enables precise error reporting and code navigation ## Testing Strategy - Unit tests for each extraction function - Integration tests with tree-sitter AST - Real file fixture for end-to-end validation - Edge cases: empty files, no context, nested structures ## Next Steps (PR #6) Pass 3 will use this call site data to: 1. Build the complete call graph structure 2. Resolve call targets to function definitions 3. Link caller and callee through edges 4. Handle disambiguation for overloaded names 🤖 Generated with [Claude Code](https://claude.com/claude-code) Co-Authored-By: Claude <[email protected]> * feat: Implement call graph builder - Pass 3 This PR completes the 3-pass algorithm for building Python call graphs by implementing the final pass that resolves call targets and constructs the complete graph structure with edges linking callers to callees. ## Changes ### Core Implementation (builder.go) 1. **BuildCallGraph()**: Main entry point for Pass 3 - Indexes all function definitions from code graph - Iterates through all Python files in the registry - Extracts imports and call sites for each file - Resolves each call site to its target function - Builds edges and stores call site details - Returns complete CallGraph with all relationships 2. **indexFunctions()**: Function indexing - Scans code graph for all function/method definitions - Maps each function to its FQN using module registry - Populates CallGraph.Functions map for quick lookup 3. **getFunctionsInFile()**: File-scoped function retrieval - Filters code graph nodes by file path - Returns only function/method definitions in that file - Used for finding containing functions of call sites 4. **findContainingFunction()**: Call site parent resolution - Determines which function contains a given call site - Uses line number comparison with nearest-match algorithm - Finds function with highest line number ≤ call line - Returns empty string for module-level calls 5. **resolveCallTarget()**: Core resolution logic - Handles simple names: sanitize() → myapp.utils.sanitize - Handles qualified names: utils.sanitize() → myapp.utils.sanitize - Resolves through import maps first - Falls back to same-module resolution - Validates FQNs against module registry - Returns (FQN, resolved bool) tuple 6. **validateFQN()**: FQN validation - Checks if a fully qualified name exists in registry - Handles both modules and functions within modules - Validates parent module for function FQNs 7. **readFileBytes()**: File reading helper - Reads source files for parsing - Handles absolute path conversion ### Comprehensive Tests (builder_test.go) Created 15 test functions covering: **Resolution Tests:** - Simple imported function resolution - Qualified import resolution (module.function) - Same-module function resolution - Unresolved method calls (obj.method) - Non-existent function handling **Validation Tests:** - Module existence validation - Function-in-module validation - Non-existent module handling **Helper Function Tests:** - Function indexing from code graph - Functions-in-file filtering - Containing function detection with edge cases **Integration Tests:** - Simple single-file call graph - Multi-file call graph with imports - Real test fixture integration ## Test Coverage - Overall: 91.8% - BuildCallGraph: 80.8% - indexFunctions: 87.5% - getFunctionsInFile: 100.0% - findContainingFunction: 100.0% - resolveCallTarget: 85.0% - validateFQN: 100.0% - readFileBytes: 75.0% ## Algorithm Overview Pass 3 ties together all previous work: ### Pass 1 (PR #2): BuildModuleRegistry - Maps file paths to module paths - Enables FQN generation ### Pass 2 (PRs #3-5): Import & Call Site Extraction - ExtractImports: Maps local names to FQNs - ExtractCallSites: Finds all function calls in AST ### Pass 3 (This PR): Call Graph Construction - Resolves call targets using import maps - Links callers to callees with edges - Validates resolutions against registry - Stores detailed call site information ## Resolution Strategy The resolver uses a multi-step approach: 1. **Simple names** (no dots): - Check import map first - Fall back to same-module lookup - Return unresolved if neither works 2. **Qualified names** (with dots): - Split into base + rest - Resolve base through imports - Append rest to get full FQN - Try current module if not imported 3. **Validation**: - Check if target exists in registry - For functions, validate parent module exists - Mark resolution success/failure ## Design Decisions 1. **Containing function detection**: - Uses nearest-match algorithm based on line numbers - Finds function with highest line number ≤ call line - Handles module-level calls by returning empty FQN 2. **Resolution priority**: - Import map takes precedence over same-module - Explicit imports always respected even if unresolved - Same-module only tried when not in imports 3. **Validation vs Resolution**: - Resolution finds FQN from imports/context - Validation checks if FQN exists in registry - Both pieces of information stored in CallSite 4. **Error handling**: - Continues processing even if some files fail - Marks individual call sites as unresolved - Returns partial graph instead of failing completely ## Next Steps The call graph infrastructure is now complete. Future PRs will: - PR #7: Add CFG data structures for control flow analysis - PR #8: Implement pattern matching for security rules - PR #9: Integrate into main initialization pipeline - PR #10: Add comprehensive documentation and examples - PR #11: Performance optimizations (caching, pooling) 🤖 Generated with [Claude Code](https://claude.com/claude-code) Co-Authored-By: Claude <[email protected]> * feat: Create CFG data structures for control flow analysis This PR implements Control Flow Graph (CFG) data structures to enable intra-procedural analysis of execution paths through functions. CFGs are essential for security analysis patterns like taint tracking and detecting missing sanitization on all paths. ## Changes ### Core Implementation (cfg.go) 1. **BlockType**: Enumeration of basic block types - Entry: Function entry point - Exit: Function exit point - Normal: Sequential execution block - Conditional: Branch blocks (if/else) - Loop: Loop header blocks (while/for) - Switch: Switch/match statement blocks - Try/Catch/Finally: Exception handling blocks 2. **BasicBlock**: Represents a single basic block - ID: Unique identifier within CFG - Type: Block category for analysis - StartLine/EndLine: Source code location - Instructions: CallSites occurring in this block - Successors: Blocks that can execute next - Predecessors: Blocks that can execute before - Condition: Condition expression (for conditional blocks) - Dominators: Blocks that always execute before this one 3. **ControlFlowGraph**: Complete CFG for a function - FunctionFQN: Fully qualified function name - Blocks: Map of block ID to BasicBlock - EntryBlockID/ExitBlockID: Special block identifiers - CallGraph: Reference for inter-procedural analysis 4. **CFG Operations**: - NewControlFlowGraph(): Creates CFG with entry/exit blocks - AddBlock(): Adds basic block to CFG - AddEdge(): Connects blocks with control flow edges - GetBlock(): Retrieves block by ID - GetSuccessors(): Returns successor blocks - GetPredecessors(): Returns predecessor blocks 5. **Dominator Analysis**: - ComputeDominators(): Calculates dominator sets using iterative data flow - IsDominator(): Checks if one block dominates another - Used to verify sanitization always occurs before usage 6. **Path Analysis**: - GetAllPaths(): Enumerates all execution paths from entry to exit - dfsAllPaths(): DFS-based path enumeration - Used for exhaustive security analysis 7. **Helper Functions**: - intersect(): Set intersection for dominator computation - slicesEqual(): Compare string slices for fixed-point detection ### Comprehensive Tests (cfg_test.go) Created 23 test functions covering: **Construction Tests:** - CFG creation with entry/exit blocks - Basic block creation with all fields - Block addition to CFG **Edge Management Tests:** - Adding edges between blocks - Duplicate edge handling - Non-existent block edge handling **Graph Navigation Tests:** - Block retrieval by ID - Successor block retrieval - Predecessor block retrieval **Dominator Analysis Tests:** - Linear CFG dominators (A→B→C) - Branching CFG dominators (if/else merge) - Dominator checking **Path Analysis Tests:** - All paths in linear CFG - All paths in branching CFG **Helper Function Tests:** - Set intersection operations - Slice equality checking **Complex Integration Test:** - Realistic function CFG with branches - Multiple blocks and paths - Dominator relationships verification ## Test Coverage - Overall: 92.7% - NewControlFlowGraph: 100.0% - AddBlock: 100.0% - AddEdge: 100.0% - GetBlock: 100.0% - GetSuccessors: 87.5% - GetPredecessors: 87.5% - ComputeDominators: 100.0% - IsDominator: 75.0% - GetAllPaths: 100.0% - dfsAllPaths: 91.7% - intersect: 100.0% - slicesEqual: 100.0% ## Design Decisions 1. **Entry/Exit blocks always created**: - Simplifies analysis by providing single entry/exit points - Standard CFG construction practice 2. **Dominator computation uses iterative algorithm**: - Simple fixed-point iteration - Converges quickly for most real-world CFGs - More efficient than other dominator algorithms for small graphs 3. **Path enumeration with cycle detection**: - Avoids infinite loops in cyclic CFGs - Uses visited tracking during DFS - WARNING: Can be exponential for complex CFGs 4. **Blocks store CallSites as instructions**: - Links CFG to call graph for inter-procedural analysis - Enables tracking tainted data through function calls 5. **Condition stored as string**: - Simple representation for conditional blocks - Could be enhanced with AST expression nodes later ## Use Cases CFGs enable several security analysis patterns: **Taint Analysis:** - Track data flow through execution paths - Detect if tainted data reaches sensitive sinks **Sanitization Verification:** - Use dominators to check if sanitization always occurs - Detect missing sanitization on some paths **Dead Code Detection:** - Find unreachable blocks - Identify code that never executes **Inter-Procedural Analysis:** - Combine CFG with call graph - Track data flow across function boundaries ## Example CFG ```python def process_user(user_id): user = get_user(user_id) # Block 1 (entry) if user.is_admin(): # Block 2 (conditional) grant_access() # Block 3 (true branch) else: deny_access() # Block 4 (false branch) log_action(user) # Block 5 (merge point) return # Block 6 (exit) ``` CFG Structure: ``` Entry → Block1 → Block2 → Block3 → Block5 → Exit ↘ Block4 ↗ ``` Dominators: - Block1 dominates all blocks (always executes) - Block2 dominates Block3, Block4, Block5 - Block3 does NOT dominate Block5 (false branch skips it) - Block4 does NOT dominate Block5 (true branch skips it) ## Next Steps Future PRs will: - PR #8: Implement pattern registry for security rules - Use CFG to detect missing sanitization patterns - Implement taint tracking across CFG paths - Combine CFG with call graph for full analysis 🤖 Generated with [Claude Code](https://claude.com/claude-code) Co-Authored-By: Claude <[email protected]> * feat: Add pattern registry with hardcoded code injection example Implements pattern matching infrastructure for security analysis with one example pattern (code injection via eval). Additional patterns will be loaded from queries in future PRs. Includes pattern types (source-sink, missing-sanitizer, dangerous-function) and matching algorithms with 92.4% test coverage. * feat: Integrate call graph into initialization pipeline Adds InitializeCallGraph() to wire together the 3-pass algorithm (module registry, call graph building, pattern loading) and AnalyzePatterns() for security pattern detection. Includes end-to-end integration tests with 92.6% coverage. * add callgraph integration * chore: comment the debugging code * cpf/enhancement: Benchmark suite test for callgraph (#331) * feat: Add comprehensive benchmark suite for performance testing This commit adds a complete benchmark suite to measure performance across small, medium, and large Python projects. The benchmarks establish baseline metrics for future optimization work. Changes: - Add benchmark_test.go with benchmarks for: * Module registry building (Pass 1) * Import extraction (Pass 2A) * Call site extraction (Pass 2B) * Call target resolution * Pattern matching - Test against 3 real-world codebases: * Small: simple_project (~5 files) * Medium: label-studio (~1000 files) * Large: salt (~10,000 files) - Fix patterns_test.go assertions for PatternMatchDetails return type - Fix godot lint errors in builder.go Baseline Performance Results (Apple M2 Max, 5 iterations): - BuildModuleRegistry_Small: 80µs (target: <10ms) ✓ - BuildModuleRegistry_Medium: 6.5ms (target: <500ms) ✓ - BuildModuleRegistry_Large: 3.3ms (target: <2s) ✓ - ExtractImports_Small: 101µs (target: <20ms) ✓ - ExtractImports_Medium: 433ms (target: <2s) ✓ - ExtractCallSites_Small: 91µs (target: <30ms) ✓ - ResolveCallTarget: 533ns (target: <1µs) ✓ All benchmarks meet performance targets. Medium/Large project benchmarks are skipped by default to keep CI fast. Enable manually with: go test -bench=Medium -run=^$ go test -bench=Large -run=^$ 🤖 Generated with [Claude Code](https://claude.com/claude-code) Co-Authored-By: Claude <[email protected]> * feat: Add ImportMap caching with sync.RWMutex for performance This commit implements thread-safe caching of ImportMap instances to avoid re-parsing imports from the same file multiple times. This provides significant performance improvements when the same imports are needed repeatedly. Changes: - Add ImportMapCache struct with RWMutex-protected cache map - Implement Get(), Put(), and GetOrExtract() cache methods - Update BuildCallGraph to use import caching - Add comprehensive cache_test.go with: * Basic CRUD operations tests * Cache hit/miss scenarios * Concurrent access safety tests * Performance benchmarks Performance characteristics: - Get operation: O(1) with read lock (allows concurrent reads) - Put operation: O(1) with write lock (exclusive access) - Thread-safe for concurrent access from multiple goroutines - Cache hit avoids expensive tree-sitter parsing Test coverage: - NewImportMapCache: 100% - Get: 100% - Put: 100% - GetOrExtract: 85.7% - All tests pass including concurrent access tests 🤖 Generated with [Claude Code](https://claude.com/claude-code) Co-Authored-By: Claude <[email protected]> * fix: Correct matchesFunctionName test expectations The test was incorrectly expecting 'evaluation' to match 'eval' via substring matching, but the implementation correctly only supports: - Exact matches: 'eval' == 'eval' - Suffix matches: 'myapp.utils.eval' ends with '.eval' - Prefix matches: 'request.GET.get' starts with 'request.GET.' This prevents false positives like matching 'evaluation' to 'eval'. Updated test case to expect false for 'evaluation' vs 'eval' match. All tests now pass. 🤖 Generated with [Claude Code](https://claude.com/claude-code) Co-Authored-By: Claude <[email protected]> * fix: Update main_test.go to include analyze command in expected output The analyze command was added in a previous commit (cmd/analyze.go) but the main_test.go wasn't updated to reflect this new command in the help output. This caused TestExecute/Successful_execution to fail because it expected the old command list without 'analyze'. Updated expected output to include: analyze Analyze source code for security vulnerabilities using call graph All tests now pass with gradle testGo. 🤖 Generated with [Claude Code](https://claude.com/claude-code) Co-Authored-By: Claude <[email protected]> * feature: add diagnostic report command for callgraph resolution * cpf/enhancement: added resolution for framework and its corresponding support (#332) * feature: added resolution for framework and its corresponding support * chore: fixed lint issues --------- Co-authored-by: Claude <[email protected]> --------- Co-authored-by: Claude <[email protected]>
1 parent b312533 commit 58a59d0

15 files changed

+2837
-41
lines changed

sourcecode-parser/cmd/analyze.go

Lines changed: 128 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,128 @@
1+
package cmd
2+
3+
import (
4+
"fmt"
5+
"strings"
6+
7+
"github.com/shivasurya/code-pathfinder/sourcecode-parser/graph"
8+
"github.com/shivasurya/code-pathfinder/sourcecode-parser/graph/callgraph"
9+
"github.com/spf13/cobra"
10+
)
11+
12+
var analyzeCmd = &cobra.Command{
13+
Use: "analyze",
14+
Short: "Analyze source code for security vulnerabilities using call graph",
15+
Run: func(cmd *cobra.Command, _ []string) {
16+
projectInput := cmd.Flag("project").Value.String()
17+
18+
if projectInput == "" {
19+
fmt.Println("Error: --project flag is required")
20+
return
21+
}
22+
23+
fmt.Println("Building code graph...")
24+
codeGraph := graph.Initialize(projectInput)
25+
26+
fmt.Println("Building call graph and analyzing security patterns...")
27+
cg, registry, patternRegistry, err := callgraph.InitializeCallGraph(codeGraph, projectInput)
28+
if err != nil {
29+
fmt.Println("Error building call graph:", err)
30+
return
31+
}
32+
33+
fmt.Printf("Call graph built successfully: %d functions indexed\n", len(cg.Functions))
34+
fmt.Printf("Module registry: %d modules\n", len(registry.Modules))
35+
36+
// Debug: Print call graph details (commented out for production)
37+
// fmt.Printf("\nDEBUG: Call graph statistics:\n")
38+
// fmt.Printf(" Functions indexed: %d\n", len(cg.Functions))
39+
// for fqn := range cg.Functions {
40+
// fmt.Printf(" - %s\n", fqn)
41+
// }
42+
// fmt.Printf(" Call sites: %d callers\n", len(cg.CallSites))
43+
// for caller, sites := range cg.CallSites {
44+
// fmt.Printf(" %s makes %d calls:\n", caller, len(sites))
45+
// for _, site := range sites {
46+
// fmt.Printf(" - Target: %s, TargetFQN: %s, Resolved: %v\n", site.Target, site.TargetFQN, site.Resolved)
47+
// }
48+
// }
49+
// fmt.Println()
50+
51+
// Run security analysis
52+
matches := callgraph.AnalyzePatterns(cg, patternRegistry)
53+
54+
if len(matches) == 0 {
55+
fmt.Println("\n✓ No security issues found!")
56+
return
57+
}
58+
59+
fmt.Printf("\n⚠ Found %d potential security issues:\n\n", len(matches))
60+
for i, match := range matches {
61+
fmt.Printf("%d. [%s] %s\n", i+1, match.Severity, match.PatternName)
62+
fmt.Printf(" Description: %s\n", match.Description)
63+
fmt.Printf(" CWE: %s, OWASP: %s\n\n", match.CWE, match.OWASP)
64+
65+
// Display source information
66+
if match.SourceFQN != "" {
67+
if match.SourceCall != "" {
68+
fmt.Printf(" Source: %s() calls %s()\n", match.SourceFQN, match.SourceCall)
69+
} else {
70+
fmt.Printf(" Source: %s\n", match.SourceFQN)
71+
}
72+
if match.SourceFile != "" {
73+
fmt.Printf(" at %s:%d\n", match.SourceFile, match.SourceLine)
74+
if match.SourceCode != "" {
75+
printCodeSnippet(match.SourceCode, int(match.SourceLine))
76+
}
77+
}
78+
fmt.Println()
79+
}
80+
81+
// Display sink information
82+
if match.SinkFQN != "" {
83+
if match.SinkCall != "" {
84+
fmt.Printf(" Sink: %s() calls %s()\n", match.SinkFQN, match.SinkCall)
85+
} else {
86+
fmt.Printf(" Sink: %s\n", match.SinkFQN)
87+
}
88+
if match.SinkFile != "" {
89+
fmt.Printf(" at %s:%d\n", match.SinkFile, match.SinkLine)
90+
if match.SinkCode != "" {
91+
printCodeSnippet(match.SinkCode, int(match.SinkLine))
92+
}
93+
}
94+
fmt.Println()
95+
}
96+
97+
// Display data flow path
98+
if len(match.DataFlowPath) > 0 {
99+
fmt.Printf(" Data flow path (%d steps):\n", len(match.DataFlowPath))
100+
for j, step := range match.DataFlowPath {
101+
if j == 0 {
102+
fmt.Printf(" %s (source)\n", step)
103+
} else if j == len(match.DataFlowPath)-1 {
104+
fmt.Printf(" └─> %s (sink)\n", step)
105+
} else {
106+
fmt.Printf(" └─> %s\n", step)
107+
}
108+
}
109+
fmt.Println()
110+
}
111+
}
112+
},
113+
}
114+
115+
func printCodeSnippet(code string, startLine int) {
116+
lines := strings.Split(code, "\n")
117+
for i, line := range lines {
118+
if line != "" {
119+
fmt.Printf(" %4d | %s\n", startLine+i, line)
120+
}
121+
}
122+
}
123+
124+
func init() {
125+
rootCmd.AddCommand(analyzeCmd)
126+
analyzeCmd.Flags().StringP("project", "p", "", "Project directory to analyze (required)")
127+
analyzeCmd.MarkFlagRequired("project") //nolint:all
128+
}
Lines changed: 223 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,223 @@
1+
package cmd
2+
3+
import (
4+
"fmt"
5+
"sort"
6+
7+
"github.com/shivasurya/code-pathfinder/sourcecode-parser/graph"
8+
"github.com/shivasurya/code-pathfinder/sourcecode-parser/graph/callgraph"
9+
"github.com/spf13/cobra"
10+
)
11+
12+
var resolutionReportCmd = &cobra.Command{
13+
Use: "resolution-report",
14+
Short: "Generate a diagnostic report on call resolution statistics",
15+
Long: `Analyze the call graph and generate a detailed report showing:
16+
- Overall resolution statistics (resolved vs unresolved)
17+
- Breakdown by failure category
18+
- Top unresolved patterns with occurrence counts
19+
20+
This helps identify why calls are not being resolved and prioritize
21+
improvements to the resolution logic.`,
22+
Run: func(cmd *cobra.Command, _ []string) {
23+
projectInput := cmd.Flag("project").Value.String()
24+
25+
if projectInput == "" {
26+
fmt.Println("Error: --project flag is required")
27+
return
28+
}
29+
30+
fmt.Println("Building code graph...")
31+
codeGraph := graph.Initialize(projectInput)
32+
33+
fmt.Println("Building call graph...")
34+
cg, registry, _, err := callgraph.InitializeCallGraph(codeGraph, projectInput)
35+
if err != nil {
36+
fmt.Printf("Error building call graph: %v\n", err)
37+
return
38+
}
39+
40+
fmt.Printf("\nResolution Report for %s\n", projectInput)
41+
fmt.Println("===============================================")
42+
43+
// Collect statistics
44+
stats := aggregateResolutionStatistics(cg)
45+
46+
// Print overall statistics
47+
printOverallStatistics(stats)
48+
fmt.Println()
49+
50+
// Print failure breakdown
51+
printFailureBreakdown(stats)
52+
fmt.Println()
53+
54+
// Print top unresolved patterns
55+
printTopUnresolvedPatterns(stats, 20)
56+
fmt.Println()
57+
58+
fmt.Printf("Module registry: %d modules\n", len(registry.Modules))
59+
},
60+
}
61+
62+
// resolutionStatistics holds aggregated statistics about call resolution.
63+
type resolutionStatistics struct {
64+
TotalCalls int
65+
ResolvedCalls int
66+
UnresolvedCalls int
67+
FailuresByReason map[string]int // Category -> count
68+
PatternCounts map[string]int // Target pattern -> count
69+
FrameworkCounts map[string]int // Framework prefix -> count (for external_framework category)
70+
UnresolvedByFQN map[string]callgraph.CallSite // For detailed inspection
71+
}
72+
73+
// aggregateResolutionStatistics analyzes the call graph and collects statistics.
74+
func aggregateResolutionStatistics(cg *callgraph.CallGraph) *resolutionStatistics {
75+
stats := &resolutionStatistics{
76+
FailuresByReason: make(map[string]int),
77+
PatternCounts: make(map[string]int),
78+
FrameworkCounts: make(map[string]int),
79+
UnresolvedByFQN: make(map[string]callgraph.CallSite),
80+
}
81+
82+
// Iterate through all call sites
83+
for _, callSites := range cg.CallSites {
84+
for _, site := range callSites {
85+
stats.TotalCalls++
86+
87+
if site.Resolved {
88+
stats.ResolvedCalls++
89+
} else {
90+
stats.UnresolvedCalls++
91+
92+
// Count by failure reason
93+
if site.FailureReason != "" {
94+
stats.FailuresByReason[site.FailureReason]++
95+
} else {
96+
stats.FailuresByReason["uncategorized"]++
97+
}
98+
99+
// Count pattern occurrences
100+
stats.PatternCounts[site.Target]++
101+
102+
// For external frameworks, track which framework
103+
if site.FailureReason == "external_framework" {
104+
// Extract framework prefix (first component before dot)
105+
for idx := 0; idx < len(site.TargetFQN); idx++ {
106+
if site.TargetFQN[idx] == '.' {
107+
framework := site.TargetFQN[:idx]
108+
stats.FrameworkCounts[framework]++
109+
break
110+
}
111+
}
112+
}
113+
114+
// Store for detailed inspection
115+
stats.UnresolvedByFQN[site.TargetFQN] = site
116+
}
117+
}
118+
}
119+
120+
return stats
121+
}
122+
123+
// printOverallStatistics prints the overall resolution statistics.
124+
func printOverallStatistics(stats *resolutionStatistics) {
125+
fmt.Println("Overall Statistics:")
126+
fmt.Printf(" Total calls: %d\n", stats.TotalCalls)
127+
fmt.Printf(" Resolved: %d (%.1f%%)\n",
128+
stats.ResolvedCalls,
129+
percentage(stats.ResolvedCalls, stats.TotalCalls))
130+
fmt.Printf(" Unresolved: %d (%.1f%%)\n",
131+
stats.UnresolvedCalls,
132+
percentage(stats.UnresolvedCalls, stats.TotalCalls))
133+
}
134+
135+
// printFailureBreakdown prints the breakdown of failures by category.
136+
func printFailureBreakdown(stats *resolutionStatistics) {
137+
fmt.Println("Failure Breakdown:")
138+
139+
// Sort categories by count (descending)
140+
type categoryCount struct {
141+
category string
142+
count int
143+
}
144+
categories := make([]categoryCount, 0, len(stats.FailuresByReason))
145+
for cat, count := range stats.FailuresByReason {
146+
categories = append(categories, categoryCount{cat, count})
147+
}
148+
sort.Slice(categories, func(i, j int) bool {
149+
return categories[i].count > categories[j].count
150+
})
151+
152+
// Print each category
153+
for _, cc := range categories {
154+
fmt.Printf(" %-20s %d (%.1f%%)\n",
155+
cc.category+":",
156+
cc.count,
157+
percentage(cc.count, stats.TotalCalls))
158+
159+
// For external frameworks, show framework breakdown
160+
if cc.category == "external_framework" && len(stats.FrameworkCounts) > 0 {
161+
// Sort frameworks by count
162+
type frameworkCount struct {
163+
framework string
164+
count int
165+
}
166+
var frameworks []frameworkCount
167+
for fw, count := range stats.FrameworkCounts {
168+
frameworks = append(frameworks, frameworkCount{fw, count})
169+
}
170+
sort.Slice(frameworks, func(i, j int) bool {
171+
return frameworks[i].count > frameworks[j].count
172+
})
173+
174+
// Print top 5 frameworks
175+
for i, fc := range frameworks {
176+
if i >= 5 {
177+
break
178+
}
179+
fmt.Printf(" %s.*: %d\n", fc.framework, fc.count)
180+
}
181+
}
182+
}
183+
}
184+
185+
// printTopUnresolvedPatterns prints the most common unresolved patterns.
186+
func printTopUnresolvedPatterns(stats *resolutionStatistics, topN int) {
187+
fmt.Printf("Top %d Unresolved Patterns:\n", topN)
188+
189+
// Sort patterns by count (descending)
190+
type patternCount struct {
191+
pattern string
192+
count int
193+
}
194+
patterns := make([]patternCount, 0, len(stats.PatternCounts))
195+
for pattern, count := range stats.PatternCounts {
196+
patterns = append(patterns, patternCount{pattern, count})
197+
}
198+
sort.Slice(patterns, func(i, j int) bool {
199+
return patterns[i].count > patterns[j].count
200+
})
201+
202+
// Print top N patterns
203+
for i, pc := range patterns {
204+
if i >= topN {
205+
break
206+
}
207+
fmt.Printf(" %2d. %-40s %d occurrences\n", i+1, pc.pattern, pc.count)
208+
}
209+
}
210+
211+
// percentage calculates the percentage of part out of total.
212+
func percentage(part, total int) float64 {
213+
if total == 0 {
214+
return 0.0
215+
}
216+
return float64(part) * 100.0 / float64(total)
217+
}
218+
219+
func init() {
220+
rootCmd.AddCommand(resolutionReportCmd)
221+
resolutionReportCmd.Flags().StringP("project", "p", "", "Project root directory")
222+
resolutionReportCmd.MarkFlagRequired("project")
223+
}

0 commit comments

Comments
 (0)