@@ -56,14 +56,14 @@ class SplitCPClassifier(SplitCP):
5656 and calibration (the data given in the ``calibrate`` method)
5757 are disjoint.
5858 - ``"split"`` or ``None``: divide the data into training and
59- calibration subsets (using the default ``calib_size`` =0.3).
59+ calibration subsets (using the default ``calib_size=0.3`` ).
6060 The splitter used is the following:
6161 ``sklearn.model_selection.ShuffleSplit`` with ``n_splits=1``.
6262
6363 By default ``None``.
6464
6565 conformity_score: Optional[BaseClassificationScore]
66- BaseClassificationScore instance.
66+ `` BaseClassificationScore`` instance.
6767 It defines the link between the observed values, the predicted ones
6868 and the conformity scores. For instance, the default ``None`` value
6969 correspondonds to a conformity score which assumes
@@ -87,7 +87,7 @@ class SplitCPClassifier(SplitCP):
8787 random_state: Optional[int]
8888 Integer used to set the numpy seed, to get reproducible calibration
8989 results.
90- If ``None``, the prediction intervals will be stochastics , and will
90+ If ``None``, the prediction intervals will be stochastic , and will
9191 change if you refit the calibration (even if no arguments have change).
9292
9393 WARNING: If ``random_state``is not ``None``, ``np.random.seed`` will
0 commit comments