diff --git a/src/sage/modular/arithgroup/congroup.pyx b/src/sage/modular/arithgroup/congroup.pyx index 318996805ca..002e3bb02da 100644 --- a/src/sage/modular/arithgroup/congroup.pyx +++ b/src/sage/modular/arithgroup/congroup.pyx @@ -132,7 +132,7 @@ def degeneracy_coset_representatives_gamma0(int N, int M, int t): dd = dd / g # Test if we've found a new coset representative. is_new = 1 - for i from 0 <= i < k: + for i in range(k): j = 4*i if (R[j+1]*aa - R[j]*bb) % t == 0 and \ (R[j+3]*cc - R[j+2]*dd) % Ndivt == 0: @@ -237,7 +237,7 @@ def degeneracy_coset_representatives_gamma1(int N, int M, int t): continue # Test if we've found a new coset representative. is_new = 1 - for i from 0 <= i < k: + for i in range(k): j = 4*i if (R[j] - aa) % t == 0 and \ (R[j+1] - bb) % t == 0 and \ @@ -258,7 +258,7 @@ def degeneracy_coset_representatives_gamma1(int N, int M, int t): # Return the list left multiplied by T. S = [] - for i from 0 <= i < k: + for i in range(k): j = 4*i S.append([R[j], R[j+1], R[j+2]*t, R[j+3]*t]) sig_free(R) diff --git a/src/sage/modular/modform/eis_series_cython.pyx b/src/sage/modular/modform/eis_series_cython.pyx index dfcc8a123ff..c29fef9cef7 100644 --- a/src/sage/modular/modform/eis_series_cython.pyx +++ b/src/sage/modular/modform/eis_series_cython.pyx @@ -93,7 +93,7 @@ cpdef Ek_ZZ(int k, int prec=10): while True: continue_flag = 0 # do the first p-1 - for i from 0 < i < p: + for i in range(1, p): ind += p if (ind >= prec): continue_flag = 1 @@ -215,7 +215,7 @@ cpdef eisenstein_series_poly(int k, int prec = 10) : mpz_clear(last_m1) fmpz_poly_set_coeff_mpz(res.poly, prec-1, val[prec-1]) - for i from 1 <= i < prec - 1 : + for i in range(1, prec - 1): fmpz_poly_set_coeff_mpz(res.poly, i, val[i]) fmpz_poly_scalar_mul_mpz(res.poly, res.poly, ((a0.denominator())).value) diff --git a/src/sage/modular/modform/l_series_gross_zagier_coeffs.pyx b/src/sage/modular/modform/l_series_gross_zagier_coeffs.pyx index 87caa9ff8ab..f91a3e256f0 100644 --- a/src/sage/modular/modform/l_series_gross_zagier_coeffs.pyx +++ b/src/sage/modular/modform/l_series_gross_zagier_coeffs.pyx @@ -68,7 +68,7 @@ def bqf_theta_series(Q, long bound, var=None): cdef long a, b, c a, b, c = Q cdef long* terms = bqf_theta_series_c(NULL, bound, a, b, c) - L = [terms[i] for i from 0 <= i <= bound] + L = [terms[i] for i in range(bound + 1)] sig_free(terms) return to_series(L, var) @@ -85,13 +85,13 @@ cdef long* bqf_theta_series_c(long* terms, long bound, long a, long b, long c) e terms = check_calloc(1 + bound, sizeof(long)) sig_on() - for x from -xmax <= x <= xmax: + for x in range(-xmax, xmax + 1): yD = b * b * x * x - 4 * c * (a * x * x - bound) if yD > 0: sqrt_yD = sqrt(yD) ymin = ceil((-b * x - sqrt_yD) / (2 * c)) ymax = floor((-b * x + sqrt_yD) / (2 * c)) - for y from ymin <= y <= ymax: + for y in range(ymin, ymax + 1): terms[a * x * x + b * x * y + c * y * y] += 1 sig_off() return terms @@ -161,7 +161,7 @@ def gross_zagier_L_series(an_list, Q, long N, long u, var=None): i += 1 sig_on() memcpy(terms, con_terms, sizeof(long) * bound) # m = 1 - for m from 2 <= m <= sqrt(bound): + for m in range(2, sqrt(bound) + 1): if arith.c_gcd_longlong(D * N, m) == 1: me = m * kronecker_symbol(D, m) j = 0 diff --git a/src/sage/modular/modsym/apply.pyx b/src/sage/modular/modsym/apply.pyx index 4d1b093ee61..40488868b37 100644 --- a/src/sage/modular/modsym/apply.pyx +++ b/src/sage/modular/modsym/apply.pyx @@ -103,7 +103,7 @@ def apply_to_monomial(int i, int j, int a, int b, int c, int d): cdef Integer res v = [] - for k from 0 <= k <= j: + for k in range(j + 1): res = PY_NEW(Integer) fmpz_poly_get_coeff_mpz(res.value, pr, k) v.append(int(res)) diff --git a/src/sage/modular/modsym/p1list.pyx b/src/sage/modular/modsym/p1list.pyx index 78f1c6d647c..111d408cee4 100644 --- a/src/sage/modular/modsym/p1list.pyx +++ b/src/sage/modular/modsym/p1list.pyx @@ -108,7 +108,7 @@ cdef int c_p1_normalize_int(int N, int u, int v, Ng = N/g vNg = (v*Ng) % N t = 1 - for k from 2 <= k <= g: + for k in range(2, g + 1): v = (v + vNg) % N t = (t + Ng) % N if v ((v * Ng) % ll_N) t = 1 - for k from 2 <= k <= g: + for k in range(2, g + 1): v = (v + vNg) % N t = (t + Ng) % N - if v(ll_s % ll_N) self.t[i] = (ll_t % ll_N)