You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
In gap 4.13 there are some improvements, e.g. converting fp groups to
permutation groups, computing abelianization of fp groups, which lead to
different generators.
This commit fixes doctests so they pass using gap 4.13.
@@ -843,29 +843,29 @@ def twisted_homology(self, n, reduced=False):
843
843
844
844
sage: Y = simplicial_sets.Torus()
845
845
sage: Y.twisted_homology(1)
846
-
Quotient module by Submodule of Ambient free module of rank 5 over the integral domain Multivariate Polynomial Ring in f2, f2inv, f3, f3inv over Integer Ring
846
+
Quotient module by Submodule of Ambient free module of rank 5 over the integral domain Multivariate Polynomial Ring in f1, f1inv, f2, f2inv over Integer Ring
847
847
Generated by the rows of the matrix:
848
848
[ 1 0 0 0 0]
849
849
[ 0 1 0 0 0]
850
850
[ 0 0 1 0 0]
851
851
[ 0 0 0 1 0]
852
852
[ 0 0 0 0 1]
853
+
[f1*f1inv - 1 0 0 0 0]
854
+
[ 0 f1*f1inv - 1 0 0 0]
855
+
[ 0 0 f1*f1inv - 1 0 0]
856
+
[ 0 0 0 f1*f1inv - 1 0]
857
+
[ 0 0 0 0 f1*f1inv - 1]
853
858
[f2*f2inv - 1 0 0 0 0]
854
859
[ 0 f2*f2inv - 1 0 0 0]
855
860
[ 0 0 f2*f2inv - 1 0 0]
856
861
[ 0 0 0 f2*f2inv - 1 0]
857
862
[ 0 0 0 0 f2*f2inv - 1]
858
-
[f3*f3inv - 1 0 0 0 0]
859
-
[ 0 f3*f3inv - 1 0 0 0]
860
-
[ 0 0 f3*f3inv - 1 0 0]
861
-
[ 0 0 0 f3*f3inv - 1 0]
862
-
[ 0 0 0 0 f3*f3inv - 1]
863
863
sage: Y.twisted_homology(2)
864
-
Quotient module by Submodule of Ambient free module of rank 0 over the integral domain Multivariate Polynomial Ring in f2, f2inv, f3, f3inv over Integer Ring
864
+
Quotient module by Submodule of Ambient free module of rank 0 over the integral domain Multivariate Polynomial Ring in f1, f1inv, f2, f2inv over Integer Ring
865
865
Generated by the rows of the matrix:
866
866
[]
867
867
sage: Y.twisted_homology(1, reduced=True)
868
-
Quotient module by Submodule of Ambient free module of rank 5 over the integral domain Multivariate Polynomial Ring in f2, f2inv, f3, f3inv over Integer Ring
868
+
Quotient module by Submodule of Ambient free module of rank 5 over the integral domain Multivariate Polynomial Ring in f1, f1inv, f2, f2inv over Integer Ring
0 commit comments