@@ -131,27 +131,27 @@ def _gens_constructor(self, poly_ring):
131131
132132 sage: ch = matroids.catalog.NonFano().chow_ring(QQ, False)
133133 sage: sorted(ch.defining_ideal()._gens_constructor(ch.defining_ideal().ring()))
134- [Aa*Ab, Aa*Ac, Aa*Ae, Aa*Ad, Aa*Ade, Aa*Abcd, Aa*Af, Aa*Adf,
135- Aa*Aef, Aa*Ag, Aa*Abeg, Aa*Acfg, Ab*Ac, Ab*Ae, Ab*Aace, Ab*Ad,
136- Ab*Ade, Ab*Af, Ab*Adf, Ab*Aef, Ab*Ag, Ab*Aadg, Ab*Acfg, Ac*Ae,
137- Ac*Ad, Ac*Ade, Ac*Af, Ac*Aabf, Ac*Adf, Ac*Aef, Ac*Ag, Ac*Aadg,
138- Ac*Abeg, Ad*Ae, Ae*Abcd, Ae*Af, Ae*Aabf, Ae*Adf, Ae*Ag, Ae*Aadg,
139- Ae*Acfg, Ad*Aace, Aace*Ade, Aace*Abcd, Af*Aace, Aabf*Aace,
140- Aace*Adf, Aace*Aef, Ag*Aace, Aace*Aadg, Aace*Abeg, Aace*Acfg,
141- Ad*Af, Ad*Aabf, Ad*Aef, Ad*Ag, Ad*Abeg, Ad*Acfg, Abcd*Ade, Af*Ade,
142- Aabf*Ade, Ade*Adf, Ade*Aef, Ag*Ade, Aadg*Ade, Abeg*Ade, Acfg*Ade,
143- Af*Abcd, Aabf*Abcd, Abcd*Adf, Abcd*Aef, Ag*Abcd, Aadg*Abcd,
144- Abcd*Abeg, Abcd*Acfg, Af*Ag, Af*Aadg, Af*Abeg, Aabf*Adf, Aabf*Aef,
145- Ag*Aabf, Aabf*Aadg, Aabf*Abeg, Aabf*Acfg, Adf*Aef, Ag*Adf,
146- Aadg*Adf, Abeg*Adf, Acfg*Adf, Ag*Aef, Aadg*Aef, Abeg*Aef,
147- Acfg*Aef, Aadg*Abeg, Aadg*Acfg, Abeg*Acfg,
148- Aa + Aabf + Aace + Aadg + Aabcdefg,
149- Ab + Aabf + Abcd + Abeg + Aabcdefg,
150- Ac + Aace + Abcd + Acfg + Aabcdefg,
151- Ad + Aadg + Abcd + Ade + Adf + Aabcdefg,
152- Ae + Aace + Abeg + Ade + Aef + Aabcdefg,
134+ [Ag + Aadg + Abeg + Acfg + Aabcdefg,
153135 Af + Aabf + Acfg + Adf + Aef + Aabcdefg,
154- Ag + Aadg + Abeg + Acfg + Aabcdefg]
136+ Ae + Aace + Abeg + Ade + Aef + Aabcdefg,
137+ Ad + Aadg + Abcd + Ade + Adf + Aabcdefg,
138+ Ac + Aace + Abcd + Acfg + Aabcdefg,
139+ Ab + Aabf + Abcd + Abeg + Aabcdefg,
140+ Aa + Aabf + Aace + Aadg + Aabcdefg,
141+ Adf*Aef, Ade*Aef, Acfg*Aef, Abeg*Aef, Abcd*Aef, Aadg*Aef,
142+ Aace*Aef, Aabf*Aef, Ag*Aef, Ad*Aef, Ac*Aef, Ab*Aef, Aa*Aef,
143+ Ade*Adf, Acfg*Adf, Abeg*Adf, Abcd*Adf, Aadg*Adf, Aace*Adf,
144+ Aabf*Adf, Ag*Adf, Ae*Adf, Ac*Adf, Ab*Adf, Aa*Adf, Acfg*Ade,
145+ Abeg*Ade, Abcd*Ade, Aadg*Ade, Aace*Ade, Aabf*Ade, Ag*Ade, Af*Ade,
146+ Ac*Ade, Ab*Ade, Aa*Ade, Abeg*Acfg, Abcd*Acfg, Aadg*Acfg,
147+ Aace*Acfg, Aabf*Acfg, Ae*Acfg, Ad*Acfg, Ab*Acfg, Aa*Acfg,
148+ Abcd*Abeg, Aadg*Abeg, Aace*Abeg, Aabf*Abeg, Af*Abeg, Ad*Abeg,
149+ Ac*Abeg, Aa*Abeg, Aadg*Abcd, Aace*Abcd, Aabf*Abcd, Ag*Abcd,
150+ Af*Abcd, Ae*Abcd, Aa*Abcd, Aace*Aadg, Aabf*Aadg, Af*Aadg, Ae*Aadg,
151+ Ac*Aadg, Ab*Aadg, Aabf*Aace, Ag*Aace, Af*Aace, Ad*Aace, Ab*Aace,
152+ Ag*Aabf, Ae*Aabf, Ad*Aabf, Ac*Aabf, Af*Ag, Ae*Ag, Ad*Ag, Ac*Ag,
153+ Ab*Ag, Aa*Ag, Ae*Af, Ad*Af, Ac*Af, Ab*Af, Aa*Af, Ad*Ae, Ac*Ae,
154+ Ab*Ae, Aa*Ae, Ac*Ad, Ab*Ad, Aa*Ad, Ab*Ac, Aa*Ac, Aa*Ab]
155155 """
156156 flats = list (self ._flats_generator )
157157 lattice_flats = Poset ((flats , lambda x , y : x <= y ))
@@ -413,33 +413,34 @@ def _gens_constructor(self, poly_ring):
413413
414414 sage: ch = matroids.Wheel(3).chow_ring(QQ, True, 'fy')
415415 sage: sorted(ch.defining_ideal()._gens_constructor(ch.defining_ideal().ring()))
416- [B0*B1, B0*B2, B0*B3, B0*B23, B0*B4, B0*B124, B0*B5, B0*B15,
417- B0*B345, B1*B2, B1*B3, B1*B23, B1*B4, B1*B04, B1*B5, B1*B025,
418- B1*B345, B2*B3, B2*B013, B2*B4, B2*B04, B2*B5, B2*B15, B2*B345,
419- B3*B4, B3*B04, B3*B124, B3*B5, B3*B025, B3*B15, B013*B23, B4*B013,
420- B013*B04, B013*B124, B5*B013, B013*B025, B013*B15, B013*B345,
421- B4*B23, B04*B23, B124*B23, B5*B23, B025*B23, B15*B23, B23*B345,
422- B4*B5, B4*B025, B4*B15, B04*B124, B5*B04, B025*B04, B04*B15,
423- B04*B345, B5*B124, B025*B124, B124*B15, B124*B345, B025*B15,
424- B025*B345, B15*B345, A0*B, A0*B1, A0*B2, A0*B3, A0*B4, A0*B5,
425- A0*B124, A0*B15, A0*B23, A0*B345, A1*B, A1*B0, A1*B2, A1*B3,
426- A1*B4, A1*B5, A1*B025, A1*B04, A1*B23, A1*B345, A2*B, A2*B0,
427- A2*B1, A2*B3, A2*B4, A2*B5, A2*B013, A2*B04, A2*B15, A2*B345,
428- A3*B, A3*B0, A3*B1, A3*B2, A3*B4, A3*B5, A3*B025, A3*B04, A3*B124,
429- A3*B15, A4*B, A4*B0, A4*B1, A4*B2, A4*B3, A4*B5, A4*B013, A4*B025,
430- A4*B15, A4*B23, A5*B, A5*B0, A5*B1, A5*B2, A5*B3, A5*B4, A5*B013,
431- A5*B04, A5*B124, A5*B23, A0 + B0 + B013 + B025 + B04 + B012345,
416+ [B + B0 + B1 + B2 + B3 + B4 + B5 + B013 + B025 + B04 + B124 + B15 + B23 + B345 + B012345,
432417 B + B0 + B1 + B2 + B3 + B4 + B5 + B013 + B025 + B04 + B124 + B15 + B23 + B345 + B012345,
433- A1 + B1 + B013 + B124 + B15 + B012345,
434418 B + B0 + B1 + B2 + B3 + B4 + B5 + B013 + B025 + B04 + B124 + B15 + B23 + B345 + B012345,
435- A2 + B2 + B025 + B124 + B23 + B012345,
436419 B + B0 + B1 + B2 + B3 + B4 + B5 + B013 + B025 + B04 + B124 + B15 + B23 + B345 + B012345,
437- A3 + B3 + B013 + B23 + B345 + B012345,
438420 B + B0 + B1 + B2 + B3 + B4 + B5 + B013 + B025 + B04 + B124 + B15 + B23 + B345 + B012345,
439- A4 + B4 + B04 + B124 + B345 + B012345,
440421 B + B0 + B1 + B2 + B3 + B4 + B5 + B013 + B025 + B04 + B124 + B15 + B23 + B345 + B012345,
441422 A5 + B5 + B025 + B15 + B345 + B012345,
442- B + B0 + B1 + B2 + B3 + B4 + B5 + B013 + B025 + B04 + B124 + B15 + B23 + B345 + B012345]
423+ A4 + B4 + B04 + B124 + B345 + B012345,
424+ A3 + B3 + B013 + B23 + B345 + B012345,
425+ A2 + B2 + B025 + B124 + B23 + B012345,
426+ A1 + B1 + B013 + B124 + B15 + B012345,
427+ A0 + B0 + B013 + B025 + B04 + B012345,
428+ B23*B345, B15*B345, B124*B345, B04*B345, B025*B345, B013*B345,
429+ B2*B345, B1*B345, B0*B345, A2*B345, A1*B345, A0*B345, B15*B23,
430+ B124*B23, B04*B23, B025*B23, B013*B23, B5*B23, B4*B23, B1*B23,
431+ B0*B23, A5*B23, A4*B23, A1*B23, A0*B23, B124*B15, B04*B15,
432+ B025*B15, B013*B15, B4*B15, B3*B15, B2*B15, B0*B15, A4*B15,
433+ A3*B15, A2*B15, A0*B15, B04*B124, B025*B124, B013*B124, B5*B124,
434+ B3*B124, B0*B124, A5*B124, A3*B124, A0*B124, B025*B04, B013*B04,
435+ B5*B04, B3*B04, B2*B04, B1*B04, A5*B04, A3*B04, A2*B04, A1*B04,
436+ B013*B025, B4*B025, B3*B025, B1*B025, A4*B025, A3*B025, A1*B025,
437+ B5*B013, B4*B013, B2*B013, A5*B013, A4*B013, A2*B013, B4*B5,
438+ B3*B5, B2*B5, B1*B5, B0*B5, A4*B5, A3*B5, A2*B5, A1*B5, A0*B5,
439+ B3*B4, B2*B4, B1*B4, B0*B4, A5*B4, A3*B4, A2*B4, A1*B4, A0*B4,
440+ B2*B3, B1*B3, B0*B3, A5*B3, A4*B3, A2*B3, A1*B3, A0*B3, B1*B2,
441+ B0*B2, A5*B2, A4*B2, A3*B2, A1*B2, A0*B2, B0*B1, A5*B1, A4*B1,
442+ A3*B1, A2*B1, A0*B1, A5*B0, A4*B0, A3*B0, A2*B0, A1*B0, A5*B,
443+ A4*B, A3*B, A2*B, A1*B, A0*B]
443444 """
444445 E = list (self ._matroid .groundset ())
445446 Q = []
@@ -658,9 +659,9 @@ def _gens_constructor(self, poly_ring):
658659 sage: M1 = Matroid(graphs.CycleGraph(3))
659660 sage: ch = M1.chow_ring(QQ, True, 'atom-free')
660661 sage: sorted(ch.defining_ideal()._gens_constructor(ch.defining_ideal().ring()))
661- [A0*A1, A0*A2, A1*A2, A0 ^2 + 2*A0 *A3 + A3^2, A1^2 + 2* A1*A3 + A3^2 ,
662- A0*A1 + A0 *A3, A2 ^2 + 2*A2 *A3 + A3^2, A0*A2 + A0*A3 ,
663- A0*A1 + A1*A3, A1*A2 + A1 *A3, A0*A2 + A2*A3, A1*A2 + A2*A3 ]
662+ [A2 ^2 + 2*A2 *A3 + A3^2, A1*A2, A1*A2 + A2*A3, A1*A2 + A1*A3, A0*A2 ,
663+ A0*A2 + A2 *A3, A0*A2 + A0*A3, A1 ^2 + 2*A1 *A3 + A3^2, A0*A1 ,
664+ A0*A1 + A1*A3, A0*A1 + A0 *A3, A0^2 + 2*A0*A3 + A3^2 ]
664665 """
665666 E = list (self ._matroid .groundset ())
666667 Q = [] # Quadratic generators
0 commit comments