|
| 1 | +r""" |
| 2 | +Modular polynomials for elliptic curves |
| 3 | +
|
| 4 | +For a positive integer `\ell`, the classical modular polynomial |
| 5 | +`\Phi_\ell\in\ZZ[X,Y]` is characterized by the property that its |
| 6 | +zero set is exactly the set of pairs of `j`-invariants connected |
| 7 | +by a cyclic `\ell`-isogeny. |
| 8 | +
|
| 9 | +The functions in this file compute *evaluations* `\Phi_\ell(j,Y)` |
| 10 | +of `\Phi_\ell`, univariate polynomials whose roots are exactly |
| 11 | +the `j`-invariants of `\ell`-isogeny neighbours of the given `j`. |
| 12 | +
|
| 13 | +Currently, the only supported algorithm is a simple database lookup |
| 14 | +followed by evaluation. Nevertheless, it makes sense to use the |
| 15 | +interface provided by :func:`classical_modular_polynomial` already, |
| 16 | +as better algorithms may be implemented and automatically selected |
| 17 | +in the future. |
| 18 | +
|
| 19 | +AUTHORS: |
| 20 | +
|
| 21 | +- Lorenz Panny (2023) |
| 22 | +""" |
| 23 | + |
| 24 | +from sage.structure.parent import Parent |
| 25 | +from sage.structure.element import parent |
| 26 | +from sage.rings.integer_ring import ZZ |
| 27 | +from sage.rings.polynomial.polynomial_ring import polygen, polygens |
| 28 | +from sage.databases.db_modular_polynomials import ClassicalModularPolynomialDatabase |
| 29 | + |
| 30 | +def classical_modular_polynomial(l, inst=None): |
| 31 | + r""" |
| 32 | + Return the classical modular polynomial `\Psi_\ell`, |
| 33 | + either as a bivariate polynomial over `\ZZ`, a bivariate |
| 34 | + polynomial over another ring, or a univariate polynomial |
| 35 | + which is the result of evaluating `\Psi_\ell` at a given |
| 36 | + `j`-invariant. |
| 37 | +
|
| 38 | + INPUT: |
| 39 | +
|
| 40 | + - ``l`` -- positive integer. |
| 41 | +
|
| 42 | + - ``inst`` -- either ``None``, a ring, or a ring element. |
| 43 | +
|
| 44 | + - If ``None`` is given, the original modular polynomial |
| 45 | + is returned as an element of `\ZZ[X,Y]`. |
| 46 | +
|
| 47 | + - If a ring `R` is given, the base change of the modular |
| 48 | + polynomial to `R[X,Y]` is returned. |
| 49 | +
|
| 50 | + - If a ring element `j \in R` is given, the evaluation |
| 51 | + `\Psi_\ell(j,Y)` is returned as an element of the |
| 52 | + univariate polynomial ring `R[Y]`. |
| 53 | +
|
| 54 | + The Kohel database |
| 55 | + :class:`~sage.databases.db_modular_polynomials.ClassicalModularPolynomialDatabase` |
| 56 | + may need to be installed. |
| 57 | +
|
| 58 | + EXAMPLES:: |
| 59 | +
|
| 60 | + sage: classical_modular_polynomial(2) |
| 61 | + -X^2*Y^2 + X^3 + 1488*X^2*Y + 1488*X*Y^2 + Y^3 - 162000*X^2 + 40773375*X*Y - 162000*Y^2 + 8748000000*X + 8748000000*Y - 157464000000000 |
| 62 | + sage: classical_modular_polynomial(3, Zmod(10)) |
| 63 | + 9*X^3*Y^3 + 2*X^3*Y^2 + 2*X^2*Y^3 + X^4 + 4*X^3*Y + 6*X^2*Y^2 + 4*X*Y^3 + Y^4 |
| 64 | + sage: j = Mod(1728, 419) |
| 65 | + sage: classical_modular_polynomial(3, j) |
| 66 | + Y^4 + 230*Y^3 + 84*Y^2 + 118*Y + 329 |
| 67 | +
|
| 68 | + TESTS:: |
| 69 | +
|
| 70 | + sage: q = random_prime(50)^randrange(1,4) |
| 71 | + sage: j = GF(q).random_element() |
| 72 | + sage: l = random_prime(50) |
| 73 | + sage: Y = polygen(parent(j), 'Y') |
| 74 | + sage: classical_modular_polynomial(l,j) == classical_modular_polynomial(l)(j,Y) |
| 75 | + True |
| 76 | + """ |
| 77 | + l = ZZ(l) |
| 78 | + |
| 79 | + db = ClassicalModularPolynomialDatabase() |
| 80 | + try: |
| 81 | + Psi = db[l] |
| 82 | + except ValueError: |
| 83 | + raise NotImplementedError('modular polynomial is not in database and computing it on the fly is not yet implemented') |
| 84 | + |
| 85 | + if inst is None: |
| 86 | + X,Y = polygen(ZZ, 'X,Y') |
| 87 | + elif isinstance(inst, Parent): |
| 88 | + R = inst |
| 89 | + X,Y = polygen(R, 'X,Y') |
| 90 | + else: |
| 91 | + j = inst |
| 92 | + X,Y = j, polygen(parent(j), 'Y') |
| 93 | + |
| 94 | + return Psi(X, Y) |
0 commit comments