@@ -741,9 +741,9 @@ def RandomPoset(n, p):
741741
742742 INPUT:
743743
744- - ``n`` - number of elements, a non-negative integer
744+ - ``n`` -- number of elements, a non-negative integer
745745
746- - ``p`` - a probability, a real number between 0 and 1 (inclusive)
746+ - ``p`` -- a probability, a real number between 0 and 1 (inclusive)
747747
748748 OUTPUT:
749749
@@ -971,9 +971,8 @@ def SSTPoset(s, f=None):
971971
972972 - ``s`` -- shape of the tableaux
973973
974- - ``f`` -- maximum fill number. This is an optional
975- argument. If no maximal number is given, it will use
976- the number of cells in the shape.
974+ - ``f`` -- integer (default: ``None``); the maximum fill number.
975+ By default (``None``), the method uses the number of cells in the shape.
977976
978977 .. NOTE::
979978
@@ -1010,8 +1009,8 @@ def tableaux_is_less_than(a, b):
10101009 @staticmethod
10111010 def StandardExample (n , facade = None ):
10121011 r"""
1013- Return the partially ordered set on ``2n` ` elements with
1014- dimension ``n` `.
1012+ Return the partially ordered set on `2n ` elements with
1013+ dimension `n `.
10151014
10161015 Let `P` be the poset on `\{0, 1, 2, \ldots, 2n-1\}` whose defining
10171016 relations are that `i < j` for every `0 \leq i < n \leq j < 2n`
@@ -1021,7 +1020,8 @@ def StandardExample(n, facade=None):
10211020 INPUT:
10221021
10231022 - ``n`` -- an integer `\ge 2`, dimension of the constructed poset
1024- - ``facade`` (boolean) -- whether to make the returned poset a
1023+
1024+ - ``facade`` -- boolean; whether to make the returned poset a
10251025 facade poset (see :mod:`sage.categories.facade_sets`); the
10261026 default behaviour is the same as the default behaviour of
10271027 the :func:`~sage.combinat.posets.posets.Poset` constructor
@@ -1081,9 +1081,9 @@ def SymmetricGroupBruhatIntervalPoset(start, end):
10811081
10821082 INPUT:
10831083
1084- - ``start`` - list permutation
1084+ - ``start`` -- list permutation
10851085
1086- - ``end`` - list permutation (same n, of course)
1086+ - ``end`` -- list permutation (same n, of course)
10871087
10881088 .. note::
10891089
@@ -1167,7 +1167,7 @@ def TetrahedralPoset(n, *colors, **labels):
11671167 r"""
11681168 Return the tetrahedral poset based on the input colors.
11691169
1170- This method will return the tetrahedral poset with n-1 layers and
1170+ This method will return the tetrahedral poset with ` n-1` layers and
11711171 covering relations based on the input colors of 'green', 'red',
11721172 'orange', 'silver', 'yellow' and 'blue' as defined in [Striker2011]_.
11731173 For particular color choices, the order ideals of the resulting
@@ -1323,7 +1323,7 @@ def SymmetricGroupAbsoluteOrderPoset(n, labels="permutations"):
13231323 - ``label`` -- (default: ``'permutations'``) a label for the elements
13241324 of the poset returned by the function; the options are
13251325
1326- * ``'permutations'`` - labels the elements are given by their
1326+ * ``'permutations'`` - labels the elements by their
13271327 one-line notation
13281328 * ``'reduced_words'`` - labels the elements by the
13291329 lexicographically minimal reduced word
@@ -1362,8 +1362,8 @@ def UpDownPoset(n, m=1):
13621362
13631363 INPUT:
13641364
1365- - ``n`` - nonnegative integer, number of elements in the poset
1366- - ``m`` - nonnegative integer (default 1), how frequently down
1365+ - ``n`` -- nonnegative integer, number of elements in the poset
1366+ - ``m`` -- nonnegative integer (default 1), how frequently down
13671367 steps occur
13681368
13691369 OUTPUT:
@@ -1602,7 +1602,7 @@ def DoubleTailedDiamond(n):
16021602 def PermutationPattern (n ):
16031603 r"""
16041604 Return the poset of permutations under pattern containment
1605- up to rank ``n` `.
1605+ up to rank `n `.
16061606
16071607 INPUT:
16081608
0 commit comments