Skip to content

Commit 873c780

Browse files
author
Matthias Koeppe
committed
src/sage/combinat/posets/poset_examples.py: Docstring cosmetics
1 parent 0f7b030 commit 873c780

File tree

1 file changed

+15
-15
lines changed

1 file changed

+15
-15
lines changed

src/sage/combinat/posets/poset_examples.py

Lines changed: 15 additions & 15 deletions
Original file line numberDiff line numberDiff line change
@@ -741,9 +741,9 @@ def RandomPoset(n, p):
741741
742742
INPUT:
743743
744-
- ``n`` - number of elements, a non-negative integer
744+
- ``n`` -- number of elements, a non-negative integer
745745
746-
- ``p`` - a probability, a real number between 0 and 1 (inclusive)
746+
- ``p`` -- a probability, a real number between 0 and 1 (inclusive)
747747
748748
OUTPUT:
749749
@@ -971,9 +971,8 @@ def SSTPoset(s, f=None):
971971
972972
- ``s`` -- shape of the tableaux
973973
974-
- ``f`` -- maximum fill number. This is an optional
975-
argument. If no maximal number is given, it will use
976-
the number of cells in the shape.
974+
- ``f`` -- integer (default: ``None``); the maximum fill number.
975+
By default (``None``), the method uses the number of cells in the shape.
977976
978977
.. NOTE::
979978
@@ -1010,8 +1009,8 @@ def tableaux_is_less_than(a, b):
10101009
@staticmethod
10111010
def StandardExample(n, facade=None):
10121011
r"""
1013-
Return the partially ordered set on ``2n`` elements with
1014-
dimension ``n``.
1012+
Return the partially ordered set on `2n` elements with
1013+
dimension `n`.
10151014
10161015
Let `P` be the poset on `\{0, 1, 2, \ldots, 2n-1\}` whose defining
10171016
relations are that `i < j` for every `0 \leq i < n \leq j < 2n`
@@ -1021,7 +1020,8 @@ def StandardExample(n, facade=None):
10211020
INPUT:
10221021
10231022
- ``n`` -- an integer `\ge 2`, dimension of the constructed poset
1024-
- ``facade`` (boolean) -- whether to make the returned poset a
1023+
1024+
- ``facade`` -- boolean; whether to make the returned poset a
10251025
facade poset (see :mod:`sage.categories.facade_sets`); the
10261026
default behaviour is the same as the default behaviour of
10271027
the :func:`~sage.combinat.posets.posets.Poset` constructor
@@ -1081,9 +1081,9 @@ def SymmetricGroupBruhatIntervalPoset(start, end):
10811081
10821082
INPUT:
10831083
1084-
- ``start`` - list permutation
1084+
- ``start`` -- list permutation
10851085
1086-
- ``end`` - list permutation (same n, of course)
1086+
- ``end`` -- list permutation (same n, of course)
10871087
10881088
.. note::
10891089
@@ -1167,7 +1167,7 @@ def TetrahedralPoset(n, *colors, **labels):
11671167
r"""
11681168
Return the tetrahedral poset based on the input colors.
11691169
1170-
This method will return the tetrahedral poset with n-1 layers and
1170+
This method will return the tetrahedral poset with `n-1` layers and
11711171
covering relations based on the input colors of 'green', 'red',
11721172
'orange', 'silver', 'yellow' and 'blue' as defined in [Striker2011]_.
11731173
For particular color choices, the order ideals of the resulting
@@ -1323,7 +1323,7 @@ def SymmetricGroupAbsoluteOrderPoset(n, labels="permutations"):
13231323
- ``label`` -- (default: ``'permutations'``) a label for the elements
13241324
of the poset returned by the function; the options are
13251325
1326-
* ``'permutations'`` - labels the elements are given by their
1326+
* ``'permutations'`` - labels the elements by their
13271327
one-line notation
13281328
* ``'reduced_words'`` - labels the elements by the
13291329
lexicographically minimal reduced word
@@ -1362,8 +1362,8 @@ def UpDownPoset(n, m=1):
13621362
13631363
INPUT:
13641364
1365-
- ``n`` - nonnegative integer, number of elements in the poset
1366-
- ``m`` - nonnegative integer (default 1), how frequently down
1365+
- ``n`` -- nonnegative integer, number of elements in the poset
1366+
- ``m`` -- nonnegative integer (default 1), how frequently down
13671367
steps occur
13681368
13691369
OUTPUT:
@@ -1602,7 +1602,7 @@ def DoubleTailedDiamond(n):
16021602
def PermutationPattern(n):
16031603
r"""
16041604
Return the poset of permutations under pattern containment
1605-
up to rank ``n``.
1605+
up to rank `n`.
16061606
16071607
INPUT:
16081608

0 commit comments

Comments
 (0)