@@ -475,7 +475,7 @@ def polytabloid(T):
475475
476476 OUTPUT:
477477
478- A ``dict`` whose keys are taboids represented by tuples of frozensets
478+ A ``dict`` whose keys are tabloids represented by tuples of frozensets
479479 and whose values are the coefficient.
480480
481481 EXAMPLES::
@@ -505,7 +505,7 @@ def tabloid_gram_matrix(la, base_ring):
505505 pulled back from the tabloid module.
506506
507507 For the module spanned by all tabloids, we define an bilinear form
508- by having the taboids be an orthonormal basis. We then pull this
508+ by having the tabloids be an orthonormal basis. We then pull this
509509 bilinear form back across the natural injection of the Specht module
510510 into the tabloid module.
511511
@@ -541,6 +541,20 @@ def simple_module_rank(la, base_ring):
541541 sage: from sage.combinat.specht_module import simple_module_rank
542542 sage: simple_module_rank([3,2,1,1], GF(3))
543543 13
544+
545+ TESTS::
546+
547+ sage: from sage.combinat.specht_module import simple_module_rank
548+ sage: simple_module_rank([1,1,1,1], GF(3))
549+ Traceback (most recent call last):
550+ ...
551+ ValueError: the partition [1, 1, 1, 1] is not 3-regular
552+
553+ sage: from sage.combinat.specht_module import simple_module_rank
554+ sage: simple_module_rank([2,1], GF(3)['x'])
555+ Traceback (most recent call last):
556+ ...
557+ NotImplementedError: the base must be a field
544558 """
545559 from sage .categories .fields import Fields
546560 from sage .combinat .partition import Partition
0 commit comments