@@ -761,7 +761,7 @@ def algebraic_complement(self):
761761 # for the formula we're using here.
762762 Q = self .parent ()
763763 OSPs = Q .basis ().keys ()
764- return Q ._from_dict ({OSPs (A .reversed ()): c for ( A , c ) in self },
764+ return Q ._from_dict ({OSPs (A .reversed ()): c for A , c in self },
765765 remove_zeros = False )
766766
767767 def coalgebraic_complement (self ):
@@ -798,7 +798,7 @@ def coalgebraic_complement(self):
798798 # for the formula we're using here.
799799 Q = self .parent ()
800800 OSPs = Q .basis ().keys ()
801- return Q ._from_dict ({OSPs (A .complement ()): c for ( A , c ) in self },
801+ return Q ._from_dict ({OSPs (A .complement ()): c for A , c in self },
802802 remove_zeros = False )
803803
804804 def star_involution (self ):
@@ -834,7 +834,7 @@ def star_involution(self):
834834 # for the formula we're using here.
835835 Q = self .parent ()
836836 OSPs = Q .basis ().keys ()
837- return Q ._from_dict ({OSPs (A .complement ().reversed ()): c for ( A , c ) in self },
837+ return Q ._from_dict ({OSPs (A .complement ().reversed ()): c for A , c in self },
838838 remove_zeros = False )
839839
840840 X = Characteristic
@@ -1280,7 +1280,7 @@ def img(A):
12801280 return {OSPs (P ): (one if (len (R ) % 2 == len (P ) % 2 )
12811281 else mine )
12821282 for R in Rs for P in R .strongly_fatter ()}
1283- return Q ._from_dict (linear_combination ((img (A ), c ) for ( A , c ) in self ))
1283+ return Q ._from_dict (linear_combination ((img (A ), c ) for A , c in self ))
12841284
12851285 def coalgebraic_complement (self ):
12861286 r"""
@@ -1328,7 +1328,7 @@ def img(A):
13281328 return {OSPs (P ): (one if (len (R ) % 2 == len (P ) % 2 )
13291329 else mine )
13301330 for R in Rs for P in R .strongly_fatter ()}
1331- return Q ._from_dict (linear_combination ((img (A ), c ) for ( A , c ) in self ))
1331+ return Q ._from_dict (linear_combination ((img (A ), c ) for A , c in self ))
13321332
13331333 def star_involution (self ):
13341334 r"""
@@ -1363,7 +1363,7 @@ def star_involution(self):
13631363 # for the formula we're using here.
13641364 Q = self .parent ()
13651365 OSPs = Q .basis ().keys ()
1366- return Q ._from_dict ({OSPs (A .complement ().reversed ()): c for ( A , c ) in self },
1366+ return Q ._from_dict ({OSPs (A .complement ().reversed ()): c for A , c in self },
13671367 remove_zeros = False )
13681368
13691369 Q = StronglyCoarser
@@ -1633,7 +1633,7 @@ def product_on_basis(self, x, y):
16331633 return self .monomial (x )
16341634 xlist = [(j , (k == 0 ))
16351635 for part in x
1636- for ( k , j ) in enumerate (sorted (part ))]
1636+ for k , j in enumerate (sorted (part ))]
16371637 # xlist is a list of the form
16381638 # [(e_1, s_1), (e_2, s_2), ..., (e_n, s_n)],
16391639 # where e_1, e_2, ..., e_n are the entries of the parts of
@@ -1643,7 +1643,7 @@ def product_on_basis(self, x, y):
16431643 m = max (max (part ) for part in x ) # The degree of x
16441644 ylist = [(m + j , (k == 0 ))
16451645 for part in y
1646- for ( k , j ) in enumerate (sorted (part ))]
1646+ for k , j in enumerate (sorted (part ))]
16471647 # ylist is like xlist, but for y instead of x, and with
16481648 # a shift by m.
16491649
@@ -1748,7 +1748,7 @@ def standardize(P): # standardize an ordered set partition
17481748 deconcatenates .append ((left , right ))
17491749 T = self .tensor_square ()
17501750 return T .sum_of_monomials ((standardize (left ), standardize (right ))
1751- for ( left , right ) in deconcatenates )
1751+ for left , right in deconcatenates )
17521752
17531753 class Element (WQSymBasis_abstract .Element ):
17541754 def algebraic_complement (self ):
@@ -1797,7 +1797,7 @@ def img(A):
17971797 return {OSPs (P ): (one if (len (R ) % 2 == len (P ) % 2 )
17981798 else mine )
17991799 for R in Rs for P in R .strongly_finer ()}
1800- return Phi ._from_dict (linear_combination ((img (A ), c ) for ( A , c ) in self ))
1800+ return Phi ._from_dict (linear_combination ((img (A ), c ) for A , c in self ))
18011801
18021802 def coalgebraic_complement (self ):
18031803 r"""
@@ -1845,7 +1845,7 @@ def img(A):
18451845 return {OSPs (P ): (one if (len (R ) % 2 == len (P ) % 2 )
18461846 else mine )
18471847 for R in Rs for P in R .strongly_finer ()}
1848- return Phi ._from_dict (linear_combination ((img (A ), c ) for ( A , c ) in self ))
1848+ return Phi ._from_dict (linear_combination ((img (A ), c ) for A , c in self ))
18491849
18501850 def star_involution (self ):
18511851 r"""
@@ -1880,7 +1880,7 @@ def star_involution(self):
18801880 # for the formula we're using here.
18811881 Phi = self .parent ()
18821882 OSPs = Phi .basis ().keys ()
1883- return Phi ._from_dict ({OSPs (A .complement ().reversed ()): c for ( A , c ) in self },
1883+ return Phi ._from_dict ({OSPs (A .complement ().reversed ()): c for A , c in self },
18841884 remove_zeros = False )
18851885
18861886 Phi = StronglyFiner
@@ -2262,7 +2262,7 @@ def algebraic_complement(self):
22622262 # complement componentwise, then convert back.
22632263 parent = self .parent ()
22642264 M = parent .realization_of ().M ()
2265- dct = {I .reversed (): coeff for ( I , coeff ) in M (self )}
2265+ dct = {I .reversed (): coeff for I , coeff in M (self )}
22662266 return parent (M ._from_dict (dct , remove_zeros = False ))
22672267
22682268 def coalgebraic_complement (self ):
@@ -2427,7 +2427,7 @@ def coalgebraic_complement(self):
24272427 # complement componentwise, then convert back.
24282428 parent = self .parent ()
24292429 M = parent .realization_of ().M ()
2430- dct = {I .complement (): coeff for ( I , coeff ) in M (self )}
2430+ dct = {I .complement (): coeff for I , coeff in M (self )}
24312431 return parent (M ._from_dict (dct , remove_zeros = False ))
24322432
24332433 def star_involution (self ):
@@ -2555,7 +2555,7 @@ def star_involution(self):
25552555 # complement componentwise, then convert back.
25562556 parent = self .parent ()
25572557 M = parent .realization_of ().M ()
2558- dct = {I .reversed ().complement (): coeff for ( I , coeff ) in M (self )}
2558+ dct = {I .reversed ().complement (): coeff for I , coeff in M (self )}
25592559 return parent (M ._from_dict (dct , remove_zeros = False ))
25602560
25612561 def to_quasisymmetric_function (self ):
@@ -2597,4 +2597,4 @@ def to_quasisymmetric_function(self):
25972597 M = QuasiSymmetricFunctions (self .parent ().base_ring ()).Monomial ()
25982598 MW = self .parent ().realization_of ().M ()
25992599 return M .sum_of_terms ((i .to_composition (), coeff )
2600- for ( i , coeff ) in MW (self ))
2600+ for i , coeff in MW (self ))
0 commit comments