|
34 | 34 | # **************************************************************************** |
35 | 35 |
|
36 | 36 | from sage.interfaces.magma import magma |
37 | | -from sage.rings.all import (Integer, |
38 | | - QQ, |
39 | | - ZZ, |
40 | | - IntegerRing, |
41 | | - is_fundamental_discriminant, |
42 | | - PolynomialRing) |
| 37 | +from sage.rings.integer import Integer |
| 38 | +from sage.rings.rational_field import QQ |
| 39 | +from sage.rings.integer_ring import ZZ |
| 40 | +from sage.rings.integer_ring import IntegerRing |
| 41 | +from sage.rings.number_field.number_field import is_fundamental_discriminant |
| 42 | +from sage.rings.polynomial.polynomial_ring_constructor import PolynomialRing |
43 | 43 |
|
44 | 44 | from sage.misc.cachefunc import cached_function |
45 | 45 |
|
@@ -124,7 +124,8 @@ def hilbert_class_polynomial(D, algorithm=None): |
124 | 124 | raise ValueError("%s is not a valid algorithm" % algorithm) |
125 | 125 |
|
126 | 126 | from sage.quadratic_forms.binary_qf import BinaryQF_reduced_representatives |
127 | | - from sage.rings.all import RR, ComplexField |
| 127 | + from sage.rings.real_mpfr import RR |
| 128 | + from sage.rings.complex_mpfr import ComplexField |
128 | 129 | from sage.functions.all import elliptic_j |
129 | 130 |
|
130 | 131 | # get all primitive reduced quadratic forms, (necessary to exclude |
@@ -623,7 +624,8 @@ def is_cm_j_invariant(j, method='new'): |
623 | 624 | True |
624 | 625 | """ |
625 | 626 | # First we check that j is an algebraic number: |
626 | | - from sage.rings.all import NumberFieldElement, NumberField |
| 627 | + from sage.rings.number_field.number_field_element import NumberFieldElement |
| 628 | + from sage.rings.number_field.number_field import NumberField |
627 | 629 | if not isinstance(j, NumberFieldElement) and j not in QQ: |
628 | 630 | raise NotImplementedError("is_cm_j_invariant() is only implemented for number field elements") |
629 | 631 |
|
|
0 commit comments