diff --git a/CHANGELOG.md b/CHANGELOG.md index 6cf1a6056f..4fdc92e028 100644 --- a/CHANGELOG.md +++ b/CHANGELOG.md @@ -1,6 +1,11 @@ # ChangeLog -## [0.7.22] +## Unreleased + +### New Features +- Added Xorbits inference for local deployments (#7151) + +## [0.7.22] - 2023-08-08 ### New Features - add ensemble retriever notebook (#7190) diff --git a/docs/core_modules/model_modules/llms/modules.md b/docs/core_modules/model_modules/llms/modules.md index 658c5db7dc..8ecd7a3ccf 100644 --- a/docs/core_modules/model_modules/llms/modules.md +++ b/docs/core_modules/model_modules/llms/modules.md @@ -81,3 +81,11 @@ maxdepth: 1 --- /examples/llm/llama_api.ipynb ``` + +## Xorbits Inference +```{toctree} +--- +maxdepth: 1 +--- +/examples/llm/XinferenceLocalDeployment.ipynb +``` diff --git a/docs/examples/llm/XinferenceLocalDeployment.ipynb b/docs/examples/llm/XinferenceLocalDeployment.ipynb new file mode 100644 index 0000000000..846216d052 --- /dev/null +++ b/docs/examples/llm/XinferenceLocalDeployment.ipynb @@ -0,0 +1,209 @@ +{ + "cells": [ + { + "attachments": {}, + "cell_type": "markdown", + "id": "7096589b-daaf-440a-b89d-b4956f2db4b2", + "metadata": { + "tags": [] + }, + "source": [ + "# Using Xorbits Inference to Deploy Local LLMs - in 3 steps!\n" + ] + }, + { + "attachments": {}, + "cell_type": "markdown", + "id": "d8cfbe6f-4c50-4c4f-90f9-03bb91201ef5", + "metadata": {}, + "source": [ + "## 🤖 Installing and Running Xorbits Inference (1/3)\n", + "\n", + "#### i. Run `pip install \"xinference[all]\"` in a terminal window\n", + "\n", + "#### ii. After installation is complete, restart this jupyter notebook\n", + "\n", + "#### iii. Run `xinference` in a new terminal window\n", + "\n", + "#### iv. You should see something similar to the following output:\n", + "\n", + "```\n", + "INFO:xinference:Xinference successfully started. Endpoint: http://127.0.0.1:9997\n", + "INFO:xinference.core.service:Worker 127.0.0.1:21561 has been added successfully\n", + "INFO:xinference.deploy.worker:Xinference worker successfully started.\n", + "```\n", + "\n", + "#### v. In the endpoint description, locate the endpoint port number after the colon. In the above case it is `9997`\n", + "\n", + "#### vi. Paste the endpoint port number in the following cell" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "5d520d56", + "metadata": {}, + "outputs": [], + "source": [ + "port = 9997 # replace with your endpoint port number" + ] + }, + { + "attachments": {}, + "cell_type": "markdown", + "id": "93139076", + "metadata": {}, + "source": [ + "## 🚀 Downloading and Launching Local Models (2/3)\n", + "\n", + "#### In this step, simply run the following code blocks\n", + "\n", + "#### Also, feel free to change the model configuration for different experiences!\n", + "\n", + "#### The latest list of supported models can be found in Xorbits Inference's [official GitHub page](https://github.com/xorbitsai/inference/blob/main/README.md)\n", + "\n", + "##### Here are the parameter options for vicuna-v1.3, ranked from the least space-consuming to the most resource-intensive but high-performing:\n", + "\n", + "model_size_in_billions: `7`, `13`, `33`\n", + "\n", + "quantization: `q2_K`, `q3_K_L`, `q3_K_M`, `q3_K_S`, `q4_0`, `q4_1`, `q4_K_M`, `q4_K_S`, `q5_0`, `q5_1`, `q5_K_M`, `q5_K_S`, `q6_K`, `q8_0`\n", + "\n", + "##### Here are a few of the supported models:\n", + "\n", + "| Name | Type | Language | Format | Size (in billions) | Quantization |\n", + "|---------------|------------------|----------|---------|--------------------|-----------------------------------------|\n", + "| baichuan | Foundation Model | en, zh | ggmlv3 | 7 | 'q2_K', 'q3_K_L', ... , 'q6_K', 'q8_0' |\n", + "| llama-2-chat | RLHF Model | en | ggmlv3 | 7, 13, 70 | 'q2_K', 'q3_K_L', ... , 'q6_K', 'q8_0' |\n", + "| chatglm | SFT Model | en, zh | ggmlv3 | 6 | 'q4_0', 'q4_1', 'q5_0', 'q5_1', 'q8_0' |\n", + "| chatglm2 | SFT Model | en, zh | ggmlv3 | 6 | 'q4_0', 'q4_1', 'q5_0', 'q5_1', 'q8_0' |\n", + "| wizardlm-v1.0 | SFT Model | en | ggmlv3 | 7, 13, 33 | 'q2_K', 'q3_K_L', ... , 'q6_K', 'q8_0' |\n", + "| wizardlm-v1.1 | SFT Model | en | ggmlv3 | 13 | 'q2_K', 'q3_K_L', ... , 'q6_K', 'q8_0' |\n", + "| vicuna-v1.3 | SFT Model | en | ggmlv3 | 7, 13 | 'q2_K', 'q3_K_L', ... , 'q6_K', 'q8_0' |\n", + "\n", + "\n", + "In order to achieve satisfactory results, it is recommended to use models above 13 billion in size." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "fd1d259c", + "metadata": {}, + "outputs": [], + "source": [ + "# If Xinference can not be imported, you may need to restart jupyter notebook\n", + "from llama_index import (\n", + " ListIndex,\n", + " TreeIndex,\n", + " VectorStoreIndex,\n", + " KeywordTableIndex,\n", + " KnowledgeGraphIndex,\n", + " SimpleDirectoryReader,\n", + " ServiceContext,\n", + ")\n", + "from llama_index.llms import Xinference\n", + "from xinference.client import RESTfulClient\n", + "from IPython.display import Markdown, display" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "b48c6d7a-7a38-440b-8ecb-f43f9050ee54", + "metadata": {}, + "outputs": [], + "source": [ + "# Define a client to send commands to xinference\n", + "client = RESTfulClient(f\"http://localhost:{port}\")\n", + "\n", + "# Download and Launch a model, this may take a while the first time\n", + "model_uid = client.launch_model(\n", + " model_name=\"llama-2-chat\",\n", + " model_size_in_billions=7,\n", + " model_format=\"ggmlv3\",\n", + " quantization=\"q2_K\",\n", + " n_ctx=4096,\n", + ")\n", + "\n", + "llm = Xinference(endpoint=f\"http://localhost:{port}\", model_uid=model_uid)\n", + "service_context = ServiceContext.from_defaults(llm=llm)" + ] + }, + { + "attachments": {}, + "cell_type": "markdown", + "id": "094a02b7", + "metadata": {}, + "source": [ + "## 🕺 Index the Data and Start Chatting! (3/3)\n", + "\n", + "#### In this step, simply run the following code blocks\n", + "\n", + "#### Also, feel free to change the index that is used for different experiences\n", + "\n", + "#### A list of all available indexes can be found in Llama Index's [official Docs](https://gpt-index.readthedocs.io/en/latest/core_modules/data_modules/index/modules.html)\n", + "\n", + "Here are some available indexes that are imported:\n", + "\n", + "`ListIndex`, `TreeIndex`, `VetorStoreIndex`, `KeywordTableIndex`, `KnowledgeGraphIndex`\n", + "\n", + "The following code uses `VetorStoreIndex`. To change index, simply replace its name with another index" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "708b323e-d314-4b83-864b-22a1ead60de9", + "metadata": {}, + "outputs": [], + "source": [ + "# create index from the data\n", + "documents = SimpleDirectoryReader(\"../data/paul_graham\").load_data()\n", + "\n", + "# change index name in the following line\n", + "index = VectorStoreIndex.from_documents(\n", + " documents=documents, service_context=service_context\n", + ")" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "2c2de13b-133f-404e-9661-2acafcdf2573", + "metadata": { + "scrolled": false + }, + "outputs": [], + "source": [ + "# ask a question and display the answer\n", + "query_engine = index.as_query_engine()\n", + "\n", + "question = \"What did the author do after his time at Y Combinator?\"\n", + "\n", + "response = query_engine.query(question)\n", + "display(Markdown(f\"{response}\"))" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3 (ipykernel)", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.11.3" + } + }, + "nbformat": 4, + "nbformat_minor": 5 +} diff --git a/llama_index/llms/__init__.py b/llama_index/llms/__init__.py index e1cca2bb28..3dce9f036c 100644 --- a/llama_index/llms/__init__.py +++ b/llama_index/llms/__init__.py @@ -19,6 +19,7 @@ from llama_index.llms.palm import PaLM from llama_index.llms.predibase import PredibaseLLM from llama_index.llms.replicate import Replicate +from llama_index.llms.xinference import Xinference __all__ = [ "OpenAI", @@ -40,4 +41,5 @@ "CompletionResponseGen", "CompletionResponseAsyncGen", "LLMMetadata", + "Xinference", ] diff --git a/llama_index/llms/xinference.py b/llama_index/llms/xinference.py new file mode 100644 index 0000000000..e15d6255a4 --- /dev/null +++ b/llama_index/llms/xinference.py @@ -0,0 +1,186 @@ +from typing import Any, Dict, Optional, Sequence + +from llama_index.callbacks import CallbackManager +from llama_index.constants import DEFAULT_NUM_OUTPUTS +from llama_index.llms.base import ( + ChatMessage, + ChatResponse, + ChatResponseGen, + CompletionResponse, + CompletionResponseGen, + LLMMetadata, + MessageRole, + llm_chat_callback, + llm_completion_callback, +) +from llama_index.llms.custom import CustomLLM +from llama_index.llms.xinference_utils import ( + xinference_message_to_history, + xinference_modelname_to_contextsize, +) + +# an approximation of the ratio between llama and GPT2 tokens +TOKEN_RATIO = 2.5 + + +class Xinference(CustomLLM): + def __init__( + self, + model_uid: str, + endpoint: str, + temperature: float = 1.0, + callback_manager: Optional[CallbackManager] = None, + ) -> None: + self.temperature = temperature + self.model_uid = model_uid + self.endpoint = endpoint + self.callback_manager = callback_manager or CallbackManager([]) + + self._model_description = None + self._context_window = None + self._generator = None + self._client = None + self._model = None + self.load() + + def load(self) -> None: + try: + from xinference.client import RESTfulClient + except ImportError: + raise ImportError( + "Could not import Xinference library." + 'Please install Xinference with `pip install "xinference[all]"`' + ) + + self._client = RESTfulClient(self.endpoint) + + try: + assert isinstance(self._client, RESTfulClient) + except AssertionError: + raise RuntimeError( + "Could not create RESTfulClient instance." + "Please make sure Xinference endpoint is running at the correct port." + ) + + self._generator = self._client.get_model(self.model_uid) + self._model_description = self._client.list_models()[self.model_uid] + + try: + assert self._generator is not None + assert self._model_description is not None + except AssertionError: + raise RuntimeError( + "Could not get model from endpoint." + "Please make sure Xinference endpoint is running at the correct port." + ) + + self._model = self._model_description["model_name"] + self._context_window = xinference_modelname_to_contextsize(self._model) + + @property + def metadata(self) -> LLMMetadata: + """LLM metadata.""" + assert isinstance(self._context_window, int) + return LLMMetadata( + context_window=int(self._context_window // TOKEN_RATIO), + num_output=DEFAULT_NUM_OUTPUTS, + model_name=self._model, + ) + + @property + def _model_kwargs(self) -> Dict[str, Any]: + assert self._context_window is not None + base_kwargs = { + "temperature": self.temperature, + "max_length": self._context_window, + } + model_kwargs = { + **base_kwargs, + **self._model_description, + } + return model_kwargs + + def _get_input_dict(self, prompt: str, **kwargs: Any) -> Dict[str, Any]: + return {"prompt": prompt, **self._model_kwargs, **kwargs} + + @llm_chat_callback() + def chat(self, messages: Sequence[ChatMessage], **kwargs: Any) -> ChatResponse: + assert self._generator is not None + prompt = messages[-1].content if len(messages) > 0 else "" + history = [xinference_message_to_history(message) for message in messages[:-1]] + response_text = self._generator.chat( + prompt=prompt, + chat_history=history, + generate_config={"stream": False, "temperature": self.temperature}, + )["choices"][0]["message"]["content"] + response = ChatResponse( + message=ChatMessage( + role=MessageRole.ASSISTANT, + content=response_text, + ), + delta=None, + ) + return response + + @llm_chat_callback() + def stream_chat( + self, messages: Sequence[ChatMessage], **kwargs: Any + ) -> ChatResponseGen: + assert self._generator is not None + prompt = messages[-1].content if len(messages) > 0 else "" + history = [xinference_message_to_history(message) for message in messages[:-1]] + response_iter = self._generator.chat( + prompt=prompt, + chat_history=history, + generate_config={"stream": True, "temperature": self.temperature}, + ) + + def gen() -> None: + text = "" + for c in response_iter: + delta = c["choices"][0]["delta"].get("content", "") + text += delta + yield ChatResponse( + message=ChatMessage( + role=MessageRole.ASSISTANT, + content=text, + ), + delta=delta, + ) + + return gen() + + @llm_completion_callback() + def complete(self, prompt: str, **kwargs: Any) -> CompletionResponse: + assert self._generator is not None + response_text = self._generator.chat( + prompt=prompt, + chat_history=None, + generate_config={"stream": False, "temperature": self.temperature}, + )["choices"][0]["message"]["content"] + response = CompletionResponse( + delta=None, + text=response_text, + ) + return response + + @llm_completion_callback() + def stream_complete(self, prompt: str, **kwargs: Any) -> CompletionResponseGen: + assert self._generator is not None + response_iter = self._generator.chat( + prompt=prompt, + chat_history=None, + generate_config={"stream": True, "temperature": self.temperature}, + ) + + def gen() -> CompletionResponseGen: + text = "" + for c in response_iter: + delta = c["choices"][0]["delta"].get("content", "") + text += delta + yield CompletionResponse( + delta=delta, + text=text, + ) + + return gen() diff --git a/llama_index/llms/xinference_utils.py b/llama_index/llms/xinference_utils.py new file mode 100644 index 0000000000..7c682d5bea --- /dev/null +++ b/llama_index/llms/xinference_utils.py @@ -0,0 +1,38 @@ +from typing import Optional +from typing_extensions import NotRequired, TypedDict + +from llama_index.llms.base import ChatMessage + +XINFERENCE_MODEL_SIZES = { + "baichuan": 2048, + "baichuan-chat": 2048, + "wizardlm-v1.0": 2048, + "vicuna-v1.3": 2048, + "orca": 2048, + "chatglm": 2048, + "chatglm2": 8192, + "llama-2-chat": 4096, + "llama-2": 4096, +} + + +class ChatCompletionMessage(TypedDict): + role: str + content: Optional[str] + user: NotRequired[str] + + +def xinference_message_to_history(message: ChatMessage) -> ChatCompletionMessage: + return ChatCompletionMessage(role=message.role, content=message.content) + + +def xinference_modelname_to_contextsize(modelname: str) -> int: + context_size = XINFERENCE_MODEL_SIZES.get(modelname, None) + + if context_size is None: + raise ValueError( + f"Unknown model: {modelname}. Please provide a valid OpenAI model name." + "Known models are: " + ", ".join(XINFERENCE_MODEL_SIZES.keys()) + ) + + return context_size diff --git a/tests/llms/test_xinference.py b/tests/llms/test_xinference.py new file mode 100644 index 0000000000..d4315ed70a --- /dev/null +++ b/tests/llms/test_xinference.py @@ -0,0 +1,176 @@ +from typing import List, Dict, Any, Union, Iterator, Generator, Mapping, Sequence + +import pytest +from llama_index.llms.base import ( + ChatMessage, + ChatResponse, + MessageRole, + CompletionResponse, +) +from llama_index.llms.xinference import Xinference + +mock_chat_history: List[ChatMessage] = [ + ChatMessage( + role=MessageRole.USER, + message="mock_chat_history_0", + ), + ChatMessage( + role=MessageRole.ASSISTANT, + message="mock_chat_history_1", + ), + ChatMessage( + role=MessageRole.USER, + message="mock_chat_history_2", + ), +] + +mock_chat: Dict[str, Any] = { + "id": "test_id", + "object": "chat.completion", + "created": 0, + "model": "test_model", + "choices": [ + { + "index": 0, + "message": {"role": "assistant", "content": "test_response"}, + "finish_reason": "stop", + } + ], + "usage": {"prompt_tokens": 0, "completion_tokens": 0, "total_tokens": 0}, +} + +mock_chat_stream: List[Dict[str, Any]] = [ + { + "id": "test_id", + "model": "test_model", + "created": 1, + "object": "chat.completion.chunk", + "choices": [ + {"index": 0, "delta": {"role": "assistant"}, "finish_reason": None} + ], + }, + { + "id": "test_id", + "model": "test_model", + "created": 1, + "object": "chat.completion.chunk", + "choices": [ + { + "index": 0, + "delta": {"content": "test_response_stream"}, + "finish_reason": None, + } + ], + }, + { + "id": "test_id", + "model": "test_model", + "created": 1, + "object": "chat.completion.chunk", + "choices": [{"index": 0, "delta": {"content": " "}, "finish_reason": "length"}], + }, +] + + +def mock_chat_stream_iterator() -> Generator: + for i in mock_chat_stream: + yield i + + +class MockXinferenceModel: + def chat( + self, + prompt: str, + chat_history: List[Mapping[str, Any]], + generate_config: Dict[str, Any], + ) -> Union[Iterator[Dict[str, Any]], Dict[str, Any]]: + assert isinstance(prompt, str) + if chat_history is not None: + for chat_item in chat_history: + assert "role" in chat_item + assert isinstance(chat_item["role"], str) + assert "content" in chat_item + assert isinstance(chat_item["content"], str) + + if "stream" in generate_config and generate_config["stream"] is True: + return mock_chat_stream_iterator() + else: + return mock_chat + + +class MockRESTfulClient: + def get_model(self) -> MockXinferenceModel: + return MockXinferenceModel() + + +class MockXinference(Xinference): + def load(self) -> None: + self._client = MockRESTfulClient() # type: ignore[assignment] + + assert self._client is not None + self._generator = self._client.get_model() + + +def test_init() -> None: + dummy = MockXinference( + model_uid="uid", + endpoint="endpoint", + ) + assert dummy.model_uid == "uid" + assert dummy.endpoint == "endpoint" + assert isinstance(dummy._client, MockRESTfulClient) + + +@pytest.mark.parametrize("chat_history", [mock_chat_history, tuple(mock_chat_history)]) +def test_chat(chat_history: Sequence[ChatMessage]) -> None: + dummy = MockXinference("uid", "endpoint") + response = dummy.chat(chat_history) + assert isinstance(response, ChatResponse) + assert response.delta is None + assert response.message.role == MessageRole.ASSISTANT + assert response.message.content == "test_response" + + +@pytest.mark.parametrize("chat_history", [mock_chat_history, tuple(mock_chat_history)]) +def test_stream_chat(chat_history: Sequence[ChatMessage]) -> None: + dummy = MockXinference("uid", "endpoint") + response_gen = dummy.stream_chat(chat_history) + total_text = "" + for i, res in enumerate(response_gen): + assert i < len(mock_chat_stream) + assert isinstance(res, ChatResponse) + assert isinstance(mock_chat_stream[i]["choices"], List) + assert isinstance(mock_chat_stream[i]["choices"][0], Dict) + assert isinstance(mock_chat_stream[i]["choices"][0]["delta"], Dict) + assert res.delta == mock_chat_stream[i]["choices"][0]["delta"].get( + "content", "" + ) + assert res.message.role == MessageRole.ASSISTANT + + total_text += mock_chat_stream[i]["choices"][0]["delta"].get("content", "") + assert total_text == res.message.content + + +def test_complete() -> None: + messages = "test_input" + dummy = MockXinference("uid", "endpoint") + response = dummy.complete(messages) + assert isinstance(response, CompletionResponse) + assert response.delta is None + assert response.text == "test_response" + + +def test_stream_complete() -> None: + message = "test_input" + dummy = MockXinference("uid", "endpoint") + response_gen = dummy.stream_complete(message) + total_text = "" + for i, res in enumerate(response_gen): + assert i < len(mock_chat_stream) + assert isinstance(res, CompletionResponse) + assert res.delta == mock_chat_stream[i]["choices"][0]["delta"].get( + "content", "" + ) + + total_text += mock_chat_stream[i]["choices"][0]["delta"].get("content", "") + assert total_text == res.text