|
| 1 | +{ |
| 2 | + "cells": [ |
| 3 | + { |
| 4 | + "attachments": {}, |
| 5 | + "cell_type": "markdown", |
| 6 | + "id": "7096589b-daaf-440a-b89d-b4956f2db4b2", |
| 7 | + "metadata": { |
| 8 | + "tags": [] |
| 9 | + }, |
| 10 | + "source": [ |
| 11 | + "# Using Xorbits Inference to Deploy Local LLMs - in 3 steps!\n" |
| 12 | + ] |
| 13 | + }, |
| 14 | + { |
| 15 | + "attachments": {}, |
| 16 | + "cell_type": "markdown", |
| 17 | + "id": "d8cfbe6f-4c50-4c4f-90f9-03bb91201ef5", |
| 18 | + "metadata": {}, |
| 19 | + "source": [ |
| 20 | + "## <span style=\"font-size: xx-large;;\">🤖 </span> Installing and Running Xorbits Inference (1/3)\n", |
| 21 | + "\n", |
| 22 | + "#### i. Run `pip install \"xinference[all]\"` in a terminal window\n", |
| 23 | + "\n", |
| 24 | + "#### ii. After installation is complete, restart this jupyter notebook\n", |
| 25 | + "\n", |
| 26 | + "#### iii. Run `xinference` in a new terminal window\n", |
| 27 | + "\n", |
| 28 | + "#### iv. You should see something similar to the following output:\n", |
| 29 | + "\n", |
| 30 | + "```\n", |
| 31 | + "INFO:xinference:Xinference successfully started. Endpoint: http://127.0.0.1:9997\n", |
| 32 | + "INFO:xinference.core.service:Worker 127.0.0.1:21561 has been added successfully\n", |
| 33 | + "INFO:xinference.deploy.worker:Xinference worker successfully started.\n", |
| 34 | + "```\n", |
| 35 | + "\n", |
| 36 | + "#### v. In the endpoint description, locate the endpoint port number after the colon. In the above case it is `9997`\n", |
| 37 | + "\n", |
| 38 | + "#### vi. Paste the endpoint port number in the following cell" |
| 39 | + ] |
| 40 | + }, |
| 41 | + { |
| 42 | + "cell_type": "code", |
| 43 | + "execution_count": null, |
| 44 | + "id": "5d520d56", |
| 45 | + "metadata": {}, |
| 46 | + "outputs": [], |
| 47 | + "source": [ |
| 48 | + "port = 9997 # replace with your endpoint port number" |
| 49 | + ] |
| 50 | + }, |
| 51 | + { |
| 52 | + "attachments": {}, |
| 53 | + "cell_type": "markdown", |
| 54 | + "id": "93139076", |
| 55 | + "metadata": {}, |
| 56 | + "source": [ |
| 57 | + "## <span style=\"font-size: xx-large;;\">🚀 </span> Downloading and Launching Local Models (2/3)\n", |
| 58 | + "\n", |
| 59 | + "#### In this step, simply run the following code blocks\n", |
| 60 | + "\n", |
| 61 | + "#### Also, feel free to change the model configuration for different experiences!\n", |
| 62 | + "\n", |
| 63 | + "#### The latest list of supported models can be found in Xorbits Inference's [official GitHub page](https://github.com/xorbitsai/inference/blob/main/README.md)\n", |
| 64 | + "\n", |
| 65 | + "##### Here are the parameter options for vicuna-v1.3, ranked from the least space-consuming to the most resource-intensive but high-performing:\n", |
| 66 | + "\n", |
| 67 | + "model_size_in_billions: `7`, `13`, `33`\n", |
| 68 | + "\n", |
| 69 | + "quantization: `q2_K`, `q3_K_L`, `q3_K_M`, `q3_K_S`, `q4_0`, `q4_1`, `q4_K_M`, `q4_K_S`, `q5_0`, `q5_1`, `q5_K_M`, `q5_K_S`, `q6_K`, `q8_0`\n", |
| 70 | + "\n", |
| 71 | + "##### Here are a few of the supported models:\n", |
| 72 | + "\n", |
| 73 | + "| Name | Type | Language | Format | Size (in billions) | Quantization |\n", |
| 74 | + "|---------------|------------------|----------|---------|--------------------|-----------------------------------------|\n", |
| 75 | + "| baichuan | Foundation Model | en, zh | ggmlv3 | 7 | 'q2_K', 'q3_K_L', ... , 'q6_K', 'q8_0' |\n", |
| 76 | + "| llama-2-chat | RLHF Model | en | ggmlv3 | 7, 13, 70 | 'q2_K', 'q3_K_L', ... , 'q6_K', 'q8_0' |\n", |
| 77 | + "| chatglm | SFT Model | en, zh | ggmlv3 | 6 | 'q4_0', 'q4_1', 'q5_0', 'q5_1', 'q8_0' |\n", |
| 78 | + "| chatglm2 | SFT Model | en, zh | ggmlv3 | 6 | 'q4_0', 'q4_1', 'q5_0', 'q5_1', 'q8_0' |\n", |
| 79 | + "| wizardlm-v1.0 | SFT Model | en | ggmlv3 | 7, 13, 33 | 'q2_K', 'q3_K_L', ... , 'q6_K', 'q8_0' |\n", |
| 80 | + "| wizardlm-v1.1 | SFT Model | en | ggmlv3 | 13 | 'q2_K', 'q3_K_L', ... , 'q6_K', 'q8_0' |\n", |
| 81 | + "| vicuna-v1.3 | SFT Model | en | ggmlv3 | 7, 13 | 'q2_K', 'q3_K_L', ... , 'q6_K', 'q8_0' |\n", |
| 82 | + "\n", |
| 83 | + "\n", |
| 84 | + "In order to achieve satisfactory results, it is recommended to use models above 13 billion in size." |
| 85 | + ] |
| 86 | + }, |
| 87 | + { |
| 88 | + "cell_type": "code", |
| 89 | + "execution_count": null, |
| 90 | + "id": "fd1d259c", |
| 91 | + "metadata": {}, |
| 92 | + "outputs": [], |
| 93 | + "source": [ |
| 94 | + "# If Xinference can not be imported, you may need to restart jupyter notebook\n", |
| 95 | + "from llama_index import (\n", |
| 96 | + " ListIndex,\n", |
| 97 | + " TreeIndex,\n", |
| 98 | + " VectorStoreIndex,\n", |
| 99 | + " KeywordTableIndex,\n", |
| 100 | + " KnowledgeGraphIndex,\n", |
| 101 | + " SimpleDirectoryReader,\n", |
| 102 | + " ServiceContext,\n", |
| 103 | + ")\n", |
| 104 | + "from llama_index.llms import Xinference\n", |
| 105 | + "from xinference.client import RESTfulClient\n", |
| 106 | + "from IPython.display import Markdown, display" |
| 107 | + ] |
| 108 | + }, |
| 109 | + { |
| 110 | + "cell_type": "code", |
| 111 | + "execution_count": null, |
| 112 | + "id": "b48c6d7a-7a38-440b-8ecb-f43f9050ee54", |
| 113 | + "metadata": {}, |
| 114 | + "outputs": [], |
| 115 | + "source": [ |
| 116 | + "# Define a client to send commands to xinference\n", |
| 117 | + "client = RESTfulClient(f\"http://localhost:{port}\")\n", |
| 118 | + "\n", |
| 119 | + "# Download and Launch a model, this may take a while the first time\n", |
| 120 | + "model_uid = client.launch_model(\n", |
| 121 | + " model_name=\"llama-2-chat\",\n", |
| 122 | + " model_size_in_billions=7,\n", |
| 123 | + " model_format=\"ggmlv3\",\n", |
| 124 | + " quantization=\"q2_K\",\n", |
| 125 | + " n_ctx=4096,\n", |
| 126 | + ")\n", |
| 127 | + "\n", |
| 128 | + "llm = Xinference(endpoint=f\"http://localhost:{port}\", model_uid=model_uid)\n", |
| 129 | + "service_context = ServiceContext.from_defaults(llm=llm)" |
| 130 | + ] |
| 131 | + }, |
| 132 | + { |
| 133 | + "attachments": {}, |
| 134 | + "cell_type": "markdown", |
| 135 | + "id": "094a02b7", |
| 136 | + "metadata": {}, |
| 137 | + "source": [ |
| 138 | + "## <span style=\"font-size: xx-large;;\">🕺 </span> Index the Data and Start Chatting! (3/3)\n", |
| 139 | + "\n", |
| 140 | + "#### In this step, simply run the following code blocks\n", |
| 141 | + "\n", |
| 142 | + "#### Also, feel free to change the index that is used for different experiences\n", |
| 143 | + "\n", |
| 144 | + "#### A list of all available indexes can be found in Llama Index's [official Docs](https://gpt-index.readthedocs.io/en/latest/core_modules/data_modules/index/modules.html)\n", |
| 145 | + "\n", |
| 146 | + "Here are some available indexes that are imported:\n", |
| 147 | + "\n", |
| 148 | + "`ListIndex`, `TreeIndex`, `VetorStoreIndex`, `KeywordTableIndex`, `KnowledgeGraphIndex`\n", |
| 149 | + "\n", |
| 150 | + "The following code uses `VetorStoreIndex`. To change index, simply replace its name with another index" |
| 151 | + ] |
| 152 | + }, |
| 153 | + { |
| 154 | + "cell_type": "code", |
| 155 | + "execution_count": null, |
| 156 | + "id": "708b323e-d314-4b83-864b-22a1ead60de9", |
| 157 | + "metadata": {}, |
| 158 | + "outputs": [], |
| 159 | + "source": [ |
| 160 | + "# create index from the data\n", |
| 161 | + "documents = SimpleDirectoryReader(\"../data/paul_graham\").load_data()\n", |
| 162 | + "\n", |
| 163 | + "# change index name in the following line\n", |
| 164 | + "index = VectorStoreIndex.from_documents(\n", |
| 165 | + " documents=documents, service_context=service_context\n", |
| 166 | + ")" |
| 167 | + ] |
| 168 | + }, |
| 169 | + { |
| 170 | + "cell_type": "code", |
| 171 | + "execution_count": null, |
| 172 | + "id": "2c2de13b-133f-404e-9661-2acafcdf2573", |
| 173 | + "metadata": { |
| 174 | + "scrolled": false |
| 175 | + }, |
| 176 | + "outputs": [], |
| 177 | + "source": [ |
| 178 | + "# ask a question and display the answer\n", |
| 179 | + "query_engine = index.as_query_engine()\n", |
| 180 | + "\n", |
| 181 | + "question = \"What did the author do after his time at Y Combinator?\"\n", |
| 182 | + "\n", |
| 183 | + "response = query_engine.query(question)\n", |
| 184 | + "display(Markdown(f\"<b>{response}</b>\"))" |
| 185 | + ] |
| 186 | + } |
| 187 | + ], |
| 188 | + "metadata": { |
| 189 | + "kernelspec": { |
| 190 | + "display_name": "Python 3 (ipykernel)", |
| 191 | + "language": "python", |
| 192 | + "name": "python3" |
| 193 | + }, |
| 194 | + "language_info": { |
| 195 | + "codemirror_mode": { |
| 196 | + "name": "ipython", |
| 197 | + "version": 3 |
| 198 | + }, |
| 199 | + "file_extension": ".py", |
| 200 | + "mimetype": "text/x-python", |
| 201 | + "name": "python", |
| 202 | + "nbconvert_exporter": "python", |
| 203 | + "pygments_lexer": "ipython3", |
| 204 | + "version": "3.11.3" |
| 205 | + } |
| 206 | + }, |
| 207 | + "nbformat": 4, |
| 208 | + "nbformat_minor": 5 |
| 209 | +} |
0 commit comments