Skip to content
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
3 changes: 0 additions & 3 deletions .github/workflows/trigger_circle_ci.py
Original file line number Diff line number Diff line change
Expand Up @@ -42,7 +42,6 @@ def assert_pipeline_created(pipeline_id, headers):


def get_workflow_id(pipeline_id, headers):

while True:
result = requests.get(f"https://circleci.com/api/v2/pipeline/{pipeline_id}/workflow", headers=headers)
assert_result(result, 200)
Expand All @@ -59,7 +58,6 @@ def get_workflow_id(pipeline_id, headers):


def assert_workflows_successful(pipeline_id, headers):

workflow_id = get_workflow_id(pipeline_id, headers)

base_url = "https://app.circleci.com/pipelines/github/pytorch/ignite"
Expand All @@ -84,7 +82,6 @@ def assert_workflows_successful(pipeline_id, headers):


if __name__ == "__main__":

print("Trigger new pipeline on Circle-CI")

if "CIRCLE_TOKEN" not in os.environ:
Expand Down
6 changes: 3 additions & 3 deletions .pre-commit-config.yaml
Original file line number Diff line number Diff line change
Expand Up @@ -15,12 +15,12 @@ repos:
exclude_types: ["python", "jupyter", "shell", "gitignore"]

- repo: https://github.com/omnilib/ufmt
rev: v1.3.1
rev: v2.1.0
hooks:
- id: ufmt
additional_dependencies:
- black == 21.12b0
- usort == 1.0.1
- black == 23.3.0
- usort == 1.0.6

- repo: https://github.com/pycqa/flake8
rev: 6.0.0
Expand Down
2 changes: 0 additions & 2 deletions docker/test_image.py
Original file line number Diff line number Diff line change
Expand Up @@ -21,7 +21,6 @@


def run_python_cmd(cmd):

try_except_cmd = f"""
import warnings
warnings.filterwarnings("ignore")
Expand Down Expand Up @@ -65,7 +64,6 @@ def main():


if __name__ == "__main__":

parser = argparse.ArgumentParser("Check docker image script")
parser.add_argument("image", type=str, help="Docker image to check")
args = parser.parse_args()
Expand Down
4 changes: 0 additions & 4 deletions examples/contrib/cifar10/main.py
Original file line number Diff line number Diff line change
Expand Up @@ -20,7 +20,6 @@


def training(local_rank, config):

rank = idist.get_rank()
manual_seed(config["seed"] + rank)
device = idist.device()
Expand Down Expand Up @@ -205,7 +204,6 @@ def run(
raise RuntimeError("The value of with_amp should be False if backend is xla")

with idist.Parallel(backend=backend, **spawn_kwargs) as parallel:

parallel.run(training, config)


Expand Down Expand Up @@ -283,7 +281,6 @@ def log_basic_info(logger, config):


def create_trainer(model, optimizer, criterion, lr_scheduler, train_sampler, config, logger):

device = idist.device()

# Setup Ignite trainer:
Expand All @@ -299,7 +296,6 @@ def create_trainer(model, optimizer, criterion, lr_scheduler, train_sampler, con
scaler = GradScaler(enabled=with_amp)

def train_step(engine, batch):

x, y = batch[0], batch[1]

if x.device != device:
Expand Down
4 changes: 0 additions & 4 deletions examples/contrib/cifar10_qat/main.py
Original file line number Diff line number Diff line change
Expand Up @@ -19,7 +19,6 @@


def training(local_rank, config):

rank = idist.get_rank()
manual_seed(config["seed"] + rank)
device = idist.device()
Expand Down Expand Up @@ -189,7 +188,6 @@ def run(
spawn_kwargs["nproc_per_node"] = nproc_per_node

with idist.Parallel(backend=backend, **spawn_kwargs) as parallel:

parallel.run(training, config)


Expand Down Expand Up @@ -267,7 +265,6 @@ def log_basic_info(logger, config):


def create_trainer(model, optimizer, criterion, lr_scheduler, train_sampler, config, logger):

device = idist.device()

# Setup Ignite trainer:
Expand All @@ -283,7 +280,6 @@ def create_trainer(model, optimizer, criterion, lr_scheduler, train_sampler, con
scaler = GradScaler(enabled=with_amp)

def train_step(engine, batch):

x, y = batch[0], batch[1]

if x.device != device:
Expand Down
5 changes: 0 additions & 5 deletions examples/contrib/transformers/main.py
Original file line number Diff line number Diff line change
Expand Up @@ -22,7 +22,6 @@


def training(local_rank, config):

rank = idist.get_rank()
manual_seed(config["seed"] + rank)
device = idist.device()
Expand All @@ -33,7 +32,6 @@ def training(local_rank, config):

output_path = config["output_dir"]
if rank == 0:

now = datetime.now().strftime("%Y%m%d-%H%M%S")
folder_name = f"{config['model']}_backend-{idist.backend()}-{idist.get_world_size()}_{now}"
output_path = Path(output_path) / folder_name
Expand Down Expand Up @@ -207,7 +205,6 @@ def run(
spawn_kwargs["nproc_per_node"] = nproc_per_node

with idist.Parallel(backend=backend, **spawn_kwargs) as parallel:

parallel.run(training, config)


Expand Down Expand Up @@ -293,7 +290,6 @@ def log_basic_info(logger, config):


def create_trainer(model, optimizer, criterion, lr_scheduler, train_sampler, config, logger):

device = idist.device()

# Setup Ignite trainer:
Expand All @@ -309,7 +305,6 @@ def create_trainer(model, optimizer, criterion, lr_scheduler, train_sampler, con
scaler = GradScaler(enabled=with_amp)

def train_step(engine, batch):

input_batch = batch[0]
labels = batch[1].view(-1, 1)

Expand Down
1 change: 0 additions & 1 deletion examples/fast_neural_style/neural_style.py
Original file line number Diff line number Diff line change
Expand Up @@ -78,7 +78,6 @@ def train(args):
running_avgs = OrderedDict()

def step(engine, batch):

x, _ = batch
x = x.to(device)

Expand Down
2 changes: 0 additions & 2 deletions examples/gan/dcgan.py
Original file line number Diff line number Diff line change
Expand Up @@ -207,7 +207,6 @@ def main(
alpha,
output_dir,
):

# seed
check_manual_seed(seed)

Expand Down Expand Up @@ -243,7 +242,6 @@ def get_noise():

# The main function, processing a batch of examples
def step(engine, batch):

# unpack the batch. It comes from a dataset, so we have <images, labels> pairs. Discard labels.
real, _ = batch
real = real.to(device)
Expand Down
2 changes: 0 additions & 2 deletions examples/references/classification/imagenet/dataflow.py
Original file line number Diff line number Diff line change
Expand Up @@ -19,7 +19,6 @@ def opencv_loader(path):


def get_dataloader(dataset, sampler=None, shuffle=False, limit_num_samples=None, **kwargs):

if limit_num_samples is not None:
g = torch.Generator().manual_seed(limit_num_samples)
indices = torch.randperm(len(dataset), generator=g)[:limit_num_samples]
Expand All @@ -38,7 +37,6 @@ def get_train_val_loaders(
limit_train_num_samples: Optional[int] = None,
limit_val_num_samples: Optional[int] = None,
) -> Tuple[DataLoader, DataLoader, DataLoader]:

train_ds = ImageFolder(
Path(root_path) / "train",
transform=lambda sample: train_transforms(image=sample)["image"],
Expand Down
5 changes: 0 additions & 5 deletions examples/references/classification/imagenet/main.py
Original file line number Diff line number Diff line change
Expand Up @@ -24,7 +24,6 @@


def training(local_rank, config, logger, with_clearml):

rank = idist.get_rank()
manual_seed(config.seed + local_rank)

Expand Down Expand Up @@ -305,7 +304,6 @@ def run_training(config_filepath, backend="nccl", with_clearml=True):
assert config_filepath.exists(), f"File '{config_filepath.as_posix()}' is not found"

with idist.Parallel(backend=backend) as parallel:

logger = setup_logger(name="ImageNet Training", distributed_rank=idist.get_rank())

config = ConfigObject(config_filepath)
Expand All @@ -327,7 +325,6 @@ def run_training(config_filepath, backend="nccl", with_clearml=True):


def get_model_weights(config, logger, with_clearml):

path = ""
if with_clearml:
from clearml import Model
Expand All @@ -352,7 +349,6 @@ def get_model_weights(config, logger, with_clearml):


def evaluation(local_rank, config, logger, with_clearml):

rank = idist.get_rank()
device = idist.device()
manual_seed(config.seed + local_rank)
Expand Down Expand Up @@ -428,5 +424,4 @@ def run_evaluation(config_filepath, backend="nccl", with_clearml=True):


if __name__ == "__main__":

fire.Fire({"training": run_training, "eval": run_evaluation})
1 change: 0 additions & 1 deletion examples/references/classification/imagenet/utils.py
Original file line number Diff line number Diff line change
Expand Up @@ -6,7 +6,6 @@


def initialize(config):

device = idist.device()

model = config.model.to(device)
Expand Down
3 changes: 0 additions & 3 deletions examples/references/segmentation/pascal_voc2012/dataflow.py
Original file line number Diff line number Diff line change
Expand Up @@ -27,7 +27,6 @@ def __getitem__(self, index):


class VOCSegmentationOpencv(VOCSegmentation):

target_names = [
"background",
"aeroplane",
Expand Down Expand Up @@ -114,7 +113,6 @@ def get_train_noval_sbdataset(root_path, return_meta=False):


def get_dataloader(dataset, sampler=None, shuffle=False, limit_num_samples=None, **kwargs):

if limit_num_samples is not None:
g = torch.Generator().manual_seed(limit_num_samples)
indices = torch.randperm(len(dataset), generator=g)[:limit_num_samples]
Expand All @@ -135,7 +133,6 @@ def get_train_val_loaders(
limit_train_num_samples=None,
limit_val_num_samples=None,
):

train_ds = get_train_dataset(root_path)
val_ds = get_val_dataset(root_path)

Expand Down
5 changes: 0 additions & 5 deletions examples/references/segmentation/pascal_voc2012/main.py
Original file line number Diff line number Diff line change
Expand Up @@ -49,7 +49,6 @@ def download_datasets(output_path):


def training(local_rank, config, logger, with_clearml):

rank = idist.get_rank()
manual_seed(config.seed + local_rank)

Expand Down Expand Up @@ -342,7 +341,6 @@ def run_training(config_filepath, backend="nccl", with_clearml=True):
assert config_filepath.exists(), f"File '{config_filepath.as_posix()}' is not found"

with idist.Parallel(backend=backend) as parallel:

logger = setup_logger(name="Pascal-VOC12 Training", distributed_rank=idist.get_rank())

config = ConfigObject(config_filepath)
Expand All @@ -364,7 +362,6 @@ def run_training(config_filepath, backend="nccl", with_clearml=True):


def get_model_weights(config, logger, with_clearml):

path = ""
if with_clearml:
from clearml import Model
Expand All @@ -389,7 +386,6 @@ def get_model_weights(config, logger, with_clearml):


def evaluation(local_rank, config, logger, with_clearml):

rank = idist.get_rank()
device = idist.device()
manual_seed(config.seed + local_rank)
Expand Down Expand Up @@ -472,5 +468,4 @@ def run_evaluation(config_filepath, backend="nccl", with_clearml=True):


if __name__ == "__main__":

fire.Fire({"download": download_datasets, "training": run_training, "eval": run_evaluation})
1 change: 0 additions & 1 deletion examples/references/segmentation/pascal_voc2012/utils.py
Original file line number Diff line number Diff line change
Expand Up @@ -6,7 +6,6 @@


def initialize(config):

device = idist.device()

model = config.model.to(device)
Expand Down
2 changes: 0 additions & 2 deletions examples/reinforcement_learning/actor_critic.py
Original file line number Diff line number Diff line change
Expand Up @@ -122,7 +122,6 @@ def finish_episode(policy, optimizer, gamma):


def main(env, args):

policy = Policy()
optimizer = optim.Adam(policy.parameters(), lr=3e-2)
timesteps = range(10000)
Expand Down Expand Up @@ -185,7 +184,6 @@ def should_finish_training():


if __name__ == "__main__":

parser = argparse.ArgumentParser(description="Ignite actor-critic example")
parser.add_argument("--gamma", type=float, default=0.99, metavar="G", help="discount factor (default: 0.99)")
parser.add_argument("--seed", type=int, default=543, metavar="N", help="random seed (default: 1)")
Expand Down
2 changes: 0 additions & 2 deletions examples/reinforcement_learning/reinforce.py
Original file line number Diff line number Diff line change
Expand Up @@ -70,7 +70,6 @@ def finish_episode(policy, optimizer, gamma):


def main(env, args):

policy = Policy()
optimizer = optim.Adam(policy.parameters(), lr=1e-2)
timesteps = range(10000)
Expand Down Expand Up @@ -123,7 +122,6 @@ def should_finish_training():


if __name__ == "__main__":

parser = argparse.ArgumentParser(description="PyTorch REINFORCE example")
parser.add_argument("--gamma", type=float, default=0.99, metavar="G", help="discount factor (default: 0.99)")
parser.add_argument("--seed", type=int, default=543, metavar="N", help="random seed (default: 543)")
Expand Down
2 changes: 0 additions & 2 deletions examples/siamese_network/siamese_network.py
Original file line number Diff line number Diff line change
Expand Up @@ -65,7 +65,6 @@ def forward_once(self, x):
return output

def forward(self, input1, input2, input3):

# pass the input through resnet
output1 = self.forward_once(input1)
output2 = self.forward_once(input2)
Expand Down Expand Up @@ -180,7 +179,6 @@ def calculate_loss(input1, input2):


def run(args, model, device, optimizer, train_loader, test_loader, lr_scheduler):

# using Triplet Margin Loss
criterion = nn.TripletMarginLoss(p=2, margin=2.8)

Expand Down
2 changes: 1 addition & 1 deletion examples/super_resolution/model.py
Original file line number Diff line number Diff line change
Expand Up @@ -10,7 +10,7 @@ def __init__(self, upscale_factor):
self.conv1 = nn.Conv2d(1, 64, (5, 5), (1, 1), (2, 2))
self.conv2 = nn.Conv2d(64, 64, (3, 3), (1, 1), (1, 1))
self.conv3 = nn.Conv2d(64, 32, (3, 3), (1, 1), (1, 1))
self.conv4 = nn.Conv2d(32, upscale_factor ** 2, (3, 3), (1, 1), (1, 1))
self.conv4 = nn.Conv2d(32, upscale_factor**2, (3, 3), (1, 1), (1, 1))
self.pixel_shuffle = nn.PixelShuffle(upscale_factor)

self._initialize_weights()
Expand Down
1 change: 0 additions & 1 deletion ignite/base/mixins.py
Original file line number Diff line number Diff line change
Expand Up @@ -4,7 +4,6 @@


class Serializable:

_state_dict_all_req_keys: Tuple = ()
_state_dict_one_of_opt_keys: Tuple = ()

Expand Down
2 changes: 0 additions & 2 deletions ignite/contrib/engines/common.py
Original file line number Diff line number Diff line change
Expand Up @@ -176,7 +176,6 @@ def _setup_common_training_handlers(
trainer.add_event_handler(Events.EPOCH_COMPLETED, empty_cuda_cache)

if to_save is not None:

if output_path is None and save_handler is None:
raise ValueError(
"If to_save argument is provided then output_path or save_handler arguments should be also defined"
Expand Down Expand Up @@ -242,7 +241,6 @@ def _setup_common_distrib_training_handlers(
save_handler: Optional[Union[Callable, BaseSaveHandler]] = None,
**kwargs: Any,
) -> None:

_setup_common_training_handlers(
trainer,
to_save=to_save,
Expand Down
Loading