@@ -420,7 +420,6 @@ def __init__(self, *,
420420 discrete_treatment = False ,
421421 categories = 'auto' ,
422422 cv = 2 ,
423- n_splits = 'raise' ,
424423 mc_iters = None ,
425424 mc_agg = 'mean' ,
426425 random_state = None ):
@@ -435,7 +434,6 @@ def __init__(self, *,
435434 super ().__init__ (discrete_treatment = discrete_treatment ,
436435 categories = categories ,
437436 cv = cv ,
438- n_splits = n_splits ,
439437 mc_iters = mc_iters ,
440438 mc_agg = mc_agg ,
441439 random_state = random_state )
@@ -596,7 +594,6 @@ def __init__(self, *,
596594 discrete_treatment = False ,
597595 categories = 'auto' ,
598596 cv = 2 ,
599- n_splits = 'raise' ,
600597 mc_iters = None ,
601598 mc_agg = 'mean' ,
602599 random_state = None ):
@@ -609,7 +606,6 @@ def __init__(self, *,
609606 discrete_treatment = discrete_treatment ,
610607 categories = categories ,
611608 cv = cv ,
612- n_splits = n_splits ,
613609 mc_iters = mc_iters ,
614610 mc_agg = mc_agg ,
615611 random_state = random_state ,)
@@ -790,7 +786,6 @@ def __init__(self, *,
790786 discrete_treatment = False ,
791787 categories = 'auto' ,
792788 cv = 2 ,
793- n_splits = 'raise' ,
794789 mc_iters = None ,
795790 mc_agg = 'mean' ,
796791 random_state = None ):
@@ -810,7 +805,6 @@ def __init__(self, *,
810805 discrete_treatment = discrete_treatment ,
811806 categories = categories ,
812807 cv = cv ,
813- n_splits = n_splits ,
814808 mc_iters = mc_iters ,
815809 mc_agg = mc_agg ,
816810 random_state = random_state )
@@ -974,7 +968,6 @@ def __init__(self, model_y='auto', model_t='auto',
974968 dim = 20 ,
975969 bw = 1.0 ,
976970 cv = 2 ,
977- n_splits = 'raise' ,
978971 mc_iters = None , mc_agg = 'mean' ,
979972 random_state = None ):
980973 self .dim = dim
@@ -987,7 +980,6 @@ def __init__(self, model_y='auto', model_t='auto',
987980 discrete_treatment = discrete_treatment ,
988981 categories = categories ,
989982 cv = cv ,
990- n_splits = n_splits ,
991983 mc_iters = mc_iters ,
992984 mc_agg = mc_agg ,
993985 random_state = random_state )
@@ -1087,7 +1079,6 @@ def __init__(self, *,
10871079 discrete_treatment = False ,
10881080 categories = 'auto' ,
10891081 cv = 2 ,
1090- n_splits = 'raise' ,
10911082 mc_iters = None ,
10921083 mc_agg = 'mean' ,
10931084 random_state = None ):
@@ -1101,7 +1092,6 @@ def __init__(self, *,
11011092 super ().__init__ (discrete_treatment = discrete_treatment ,
11021093 categories = categories ,
11031094 cv = cv ,
1104- n_splits = n_splits ,
11051095 mc_iters = mc_iters ,
11061096 mc_agg = mc_agg ,
11071097 random_state = random_state )
@@ -1190,7 +1180,6 @@ def ForestDML(model_y, model_t,
11901180 discrete_treatment = False ,
11911181 categories = 'auto' ,
11921182 cv = 2 ,
1193- n_crossfit_splits = 'raise' ,
11941183 mc_iters = None ,
11951184 mc_agg = 'mean' ,
11961185 n_estimators = 100 ,
@@ -1245,10 +1234,6 @@ def ForestDML(model_y, model_t,
12451234 Unless an iterable is used, we call `split(concat[W, X], T)` to generate the splits. If all
12461235 W, X are None, then we call `split(ones((T.shape[0], 1)), T)`.
12471236
1248- n_crossfit_splits: int or 'raise', optional (default='raise')
1249- Deprecated by parameter `cv` and will be removed in next version. Can be used
1250- interchangeably with `cv`.
1251-
12521237 mc_iters: int, optional (default=None)
12531238 The number of times to rerun the first stage models to reduce the variance of the nuisances.
12541239
@@ -1375,7 +1360,6 @@ def ForestDML(model_y, model_t,
13751360 discrete_treatment = discrete_treatment ,
13761361 categories = categories ,
13771362 cv = cv ,
1378- n_crossfit_splits = n_crossfit_splits ,
13791363 mc_iters = mc_iters ,
13801364 mc_agg = mc_agg ,
13811365 n_estimators = n_estimators ,
0 commit comments