|
187 | 187 | { |
188 | 188 | "data": { |
189 | 189 | "text/plain": [ |
190 | | - "<econml.dml.dynamic_dml.DynamicDML at 0x24466408a48>" |
| 190 | + "<econml.dml.dynamic_dml.DynamicDML at 0x1da18865cc8>" |
191 | 191 | ] |
192 | 192 | }, |
193 | 193 | "execution_count": 7, |
|
281 | 281 | " <td></td> <th>point_estimate</th> <th>stderr</th> <th>zstat</th> <th>pvalue</th> <th>ci_lower</th> <th>ci_upper</th>\n", |
282 | 282 | "</tr>\n", |
283 | 283 | "<tr>\n", |
284 | | - " <th>cate_intercept|$(T0)_0$</th> <td>0.711</td> <td>0.041</td> <td>17.224</td> <td>0.0</td> <td>0.643</td> <td>0.779</td> \n", |
| 284 | + " <th>cate_intercept|(T0)$_0$</th> <td>0.711</td> <td>0.041</td> <td>17.224</td> <td>0.0</td> <td>0.643</td> <td>0.779</td> \n", |
285 | 285 | "</tr>\n", |
286 | 286 | "<tr>\n", |
287 | | - " <th>cate_intercept|$(T0)_1$</th> <td>1.031</td> <td>0.096</td> <td>10.715</td> <td>0.0</td> <td>0.872</td> <td>1.189</td> \n", |
| 287 | + " <th>cate_intercept|(T0)$_1$</th> <td>1.031</td> <td>0.096</td> <td>10.715</td> <td>0.0</td> <td>0.872</td> <td>1.189</td> \n", |
288 | 288 | "</tr>\n", |
289 | 289 | "<tr>\n", |
290 | | - " <th>cate_intercept|$(T0)_2$</th> <td>0.518</td> <td>0.142</td> <td>3.658</td> <td>0.0</td> <td>0.285</td> <td>0.751</td> \n", |
| 290 | + " <th>cate_intercept|(T0)$_2$</th> <td>0.518</td> <td>0.142</td> <td>3.658</td> <td>0.0</td> <td>0.285</td> <td>0.751</td> \n", |
291 | 291 | "</tr>\n", |
292 | 292 | "</table><br/><br/><sub>A linear parametric conditional average treatment effect (CATE) model was fitted:<br/>$Y = \\Theta(X)\\cdot T + g(X, W) + \\epsilon$<br/>where for every outcome $i$ and treatment $j$ the CATE $\\Theta_{ij}(X)$ has the form:<br/>$\\Theta_{ij}(X) = \\phi(X)' coef_{ij} + cate\\_intercept_{ij}$<br/>where $\\phi(X)$ is the output of the `featurizer` or $X$ if `featurizer`=None. Coefficient Results table portrays the $coef_{ij}$ parameter vector for each outcome $i$ and treatment $j$. Intercept Results table portrays the $cate\\_intercept_{ij}$ parameter.</sub>" |
293 | 293 | ], |
|
298 | 298 | "=============================================================================\n", |
299 | 299 | " point_estimate stderr zstat pvalue ci_lower ci_upper\n", |
300 | 300 | "-----------------------------------------------------------------------------\n", |
301 | | - "cate_intercept|$(T0)_0$ 0.711 0.041 17.224 0.0 0.643 0.779\n", |
302 | | - "cate_intercept|$(T0)_1$ 1.031 0.096 10.715 0.0 0.872 1.189\n", |
303 | | - "cate_intercept|$(T0)_2$ 0.518 0.142 3.658 0.0 0.285 0.751\n", |
| 301 | + "cate_intercept|(T0)$_0$ 0.711 0.041 17.224 0.0 0.643 0.779\n", |
| 302 | + "cate_intercept|(T0)$_1$ 1.031 0.096 10.715 0.0 0.872 1.189\n", |
| 303 | + "cate_intercept|(T0)$_2$ 0.518 0.142 3.658 0.0 0.285 0.751\n", |
304 | 304 | "-----------------------------------------------------------------------------\n", |
305 | 305 | "\n", |
306 | 306 | "<sub>A linear parametric conditional average treatment effect (CATE) model was fitted:\n", |
|
446 | 446 | { |
447 | 447 | "data": { |
448 | 448 | "text/plain": [ |
449 | | - "<econml.dml.dynamic_dml.DynamicDML at 0x2446689cd08>" |
| 449 | + "<econml.dml.dynamic_dml.DynamicDML at 0x1da188e8a08>" |
450 | 450 | ] |
451 | 451 | }, |
452 | 452 | "execution_count": 17, |
|
472 | 472 | " <td></td> <th>point_estimate</th> <th>stderr</th> <th>zstat</th> <th>pvalue</th> <th>ci_lower</th> <th>ci_upper</th>\n", |
473 | 473 | "</tr>\n", |
474 | 474 | "<tr>\n", |
475 | | - " <th>X0|$(T0)_0$</th> <td>0.394</td> <td>0.103</td> <td>3.838</td> <td>0.0</td> <td>0.225</td> <td>0.563</td> \n", |
| 475 | + " <th>X0|(T0)$_0$</th> <td>0.394</td> <td>0.103</td> <td>3.838</td> <td>0.0</td> <td>0.225</td> <td>0.563</td> \n", |
476 | 476 | "</tr>\n", |
477 | 477 | "<tr>\n", |
478 | | - " <th>X0|$(T0)_1$</th> <td>-0.066</td> <td>0.191</td> <td>-0.345</td> <td>0.73</td> <td>-0.38</td> <td>0.248</td> \n", |
| 478 | + " <th>X0|(T0)$_1$</th> <td>-0.066</td> <td>0.191</td> <td>-0.345</td> <td>0.73</td> <td>-0.38</td> <td>0.248</td> \n", |
479 | 479 | "</tr>\n", |
480 | 480 | "<tr>\n", |
481 | | - " <th>X0|$(T0)_2$</th> <td>0.04</td> <td>0.2</td> <td>0.199</td> <td>0.843</td> <td>-0.29</td> <td>0.369</td> \n", |
| 481 | + " <th>X0|(T0)$_2$</th> <td>0.04</td> <td>0.2</td> <td>0.199</td> <td>0.843</td> <td>-0.29</td> <td>0.369</td> \n", |
482 | 482 | "</tr>\n", |
483 | 483 | "</table>\n", |
484 | 484 | "<table class=\"simpletable\">\n", |
|
487 | 487 | " <td></td> <th>point_estimate</th> <th>stderr</th> <th>zstat</th> <th>pvalue</th> <th>ci_lower</th> <th>ci_upper</th>\n", |
488 | 488 | "</tr>\n", |
489 | 489 | "<tr>\n", |
490 | | - " <th>cate_intercept|$(T0)_0$</th> <td>0.579</td> <td>0.052</td> <td>11.242</td> <td>0.0</td> <td>0.495</td> <td>0.664</td> \n", |
| 490 | + " <th>cate_intercept|(T0)$_0$</th> <td>0.579</td> <td>0.052</td> <td>11.242</td> <td>0.0</td> <td>0.495</td> <td>0.664</td> \n", |
491 | 491 | "</tr>\n", |
492 | 492 | "<tr>\n", |
493 | | - " <th>cate_intercept|$(T0)_1$</th> <td>0.032</td> <td>0.086</td> <td>0.379</td> <td>0.705</td> <td>-0.108</td> <td>0.173</td> \n", |
| 493 | + " <th>cate_intercept|(T0)$_1$</th> <td>0.032</td> <td>0.086</td> <td>0.379</td> <td>0.705</td> <td>-0.108</td> <td>0.173</td> \n", |
494 | 494 | "</tr>\n", |
495 | 495 | "<tr>\n", |
496 | | - " <th>cate_intercept|$(T0)_2$</th> <td>-0.098</td> <td>0.093</td> <td>-1.048</td> <td>0.294</td> <td>-0.251</td> <td>0.056</td> \n", |
| 496 | + " <th>cate_intercept|(T0)$_2$</th> <td>-0.098</td> <td>0.093</td> <td>-1.048</td> <td>0.294</td> <td>-0.251</td> <td>0.056</td> \n", |
497 | 497 | "</tr>\n", |
498 | 498 | "</table><br/><br/><sub>A linear parametric conditional average treatment effect (CATE) model was fitted:<br/>$Y = \\Theta(X)\\cdot T + g(X, W) + \\epsilon$<br/>where for every outcome $i$ and treatment $j$ the CATE $\\Theta_{ij}(X)$ has the form:<br/>$\\Theta_{ij}(X) = \\phi(X)' coef_{ij} + cate\\_intercept_{ij}$<br/>where $\\phi(X)$ is the output of the `featurizer` or $X$ if `featurizer`=None. Coefficient Results table portrays the $coef_{ij}$ parameter vector for each outcome $i$ and treatment $j$. Intercept Results table portrays the $cate\\_intercept_{ij}$ parameter.</sub>" |
499 | 499 | ], |
|
504 | 504 | "=================================================================\n", |
505 | 505 | " point_estimate stderr zstat pvalue ci_lower ci_upper\n", |
506 | 506 | "-----------------------------------------------------------------\n", |
507 | | - "X0|$(T0)_0$ 0.394 0.103 3.838 0.0 0.225 0.563\n", |
508 | | - "X0|$(T0)_1$ -0.066 0.191 -0.345 0.73 -0.38 0.248\n", |
509 | | - "X0|$(T0)_2$ 0.04 0.2 0.199 0.843 -0.29 0.369\n", |
| 507 | + "X0|(T0)$_0$ 0.394 0.103 3.838 0.0 0.225 0.563\n", |
| 508 | + "X0|(T0)$_1$ -0.066 0.191 -0.345 0.73 -0.38 0.248\n", |
| 509 | + "X0|(T0)$_2$ 0.04 0.2 0.199 0.843 -0.29 0.369\n", |
510 | 510 | " CATE Intercept Results \n", |
511 | 511 | "=============================================================================\n", |
512 | 512 | " point_estimate stderr zstat pvalue ci_lower ci_upper\n", |
513 | 513 | "-----------------------------------------------------------------------------\n", |
514 | | - "cate_intercept|$(T0)_0$ 0.579 0.052 11.242 0.0 0.495 0.664\n", |
515 | | - "cate_intercept|$(T0)_1$ 0.032 0.086 0.379 0.705 -0.108 0.173\n", |
516 | | - "cate_intercept|$(T0)_2$ -0.098 0.093 -1.048 0.294 -0.251 0.056\n", |
| 514 | + "cate_intercept|(T0)$_0$ 0.579 0.052 11.242 0.0 0.495 0.664\n", |
| 515 | + "cate_intercept|(T0)$_1$ 0.032 0.086 0.379 0.705 -0.108 0.173\n", |
| 516 | + "cate_intercept|(T0)$_2$ -0.098 0.093 -1.048 0.294 -0.251 0.056\n", |
517 | 517 | "-----------------------------------------------------------------------------\n", |
518 | 518 | "\n", |
519 | 519 | "<sub>A linear parametric conditional average treatment effect (CATE) model was fitted:\n", |
|
0 commit comments