|
| 1 | +#include "mpiimpl.h" |
| 2 | + |
| 3 | +/* Algorithm: Circulant graph queued variable ring bcast |
| 4 | + * This algorithm is based on the paper by Jesper Larsson Traff: |
| 5 | + * https://dl.acm.org/doi/full/10.1145/3735139, with additional optimizations. |
| 6 | + * It is optimal for both small and large message sizes. |
| 7 | + */ |
| 8 | + |
| 9 | +struct sched_args_t { |
| 10 | + int* skips; |
| 11 | + int* send_sched; |
| 12 | + int* next; |
| 13 | + int* prev; |
| 14 | + int* extra; |
| 15 | + int tree_depth; |
| 16 | + int comm_size; |
| 17 | +}; |
| 18 | + |
| 19 | +struct queue_tracker_t { |
| 20 | + MPIR_Request* req; |
| 21 | + int chunk_id; |
| 22 | + int need_wait; |
| 23 | +}; |
| 24 | + |
| 25 | +static int all_blocks(int r, int r_, int s, int e, int k, int* buffer, struct sched_args_t* args); |
| 26 | +static void gen_rsched(int r, int* buffer, struct sched_args_t* args); |
| 27 | +static void gen_ssched(int r, struct sched_args_t* args); |
| 28 | + |
| 29 | +static int get_baseblock(int r, struct sched_args_t* args); |
| 30 | + |
| 31 | +int MPIR_Bcast_intra_circ_qvring(void *buffer, |
| 32 | + MPI_Aint count, |
| 33 | + MPI_Datatype datatype, |
| 34 | + int root, MPIR_Comm* comm, |
| 35 | + const int chunk_size, const int q_len, int coll_attr) |
| 36 | +{ |
| 37 | + int mpi_errno = MPI_SUCCESS; |
| 38 | + |
| 39 | + int comm_size = comm->local_size; |
| 40 | + int rank = comm->rank; |
| 41 | + |
| 42 | + if (comm_size < 2) { |
| 43 | + goto fn_exit; |
| 44 | + } |
| 45 | + |
| 46 | + int depth = 1; |
| 47 | + while (0x1<<depth < comm_size) { |
| 48 | + depth++; |
| 49 | + } |
| 50 | + |
| 51 | + /* Circulant Graph Queued Variable Ring Bcast: |
| 52 | + * This algorithm uses the circulant graph abstraction to create communication |
| 53 | + * rings of every "n" processes, where "n" values are called "skips". |
| 54 | + * We use a roughly doubling pattern to generate the skips, creating log2(p) |
| 55 | + * communication rounds, making the algorithm latency-optimal for small messages. |
| 56 | + * |
| 57 | + * The algorithm works by generating a schedule of sends and receives based on the |
| 58 | + * number of processes (see paper for algorithm). The schedule is then executed to |
| 59 | + * complete the broadcast. The message size can be broken into chunks and pipelined, |
| 60 | + * repeating the send schedule for each chunk, to optimize for bandwidth/large messages. |
| 61 | + * |
| 62 | + * This implementation also includes a queued send optimization, where "q_len" sends |
| 63 | + * can be outstanding simultaneously. Bcast is a one->many operation, so the root can |
| 64 | + * begin the algorithm with "q_len" non-blocking sends, and each receiving process then |
| 65 | + * does the same. New sends are introduced when previous sends complete using a FIFO |
| 66 | + * queue. This optimization further improves small-message performance. |
| 67 | + */ |
| 68 | + |
| 69 | + MPIR_CHKLMEM_DECL(); |
| 70 | + int* skips; int* recv_sched; int* send_sched; int* next; int* prev; int* extra; |
| 71 | + MPIR_CHKLMEM_MALLOC(skips, (depth + 1) * sizeof(int)); |
| 72 | + MPIR_CHKLMEM_MALLOC(recv_sched, depth * sizeof(int)); |
| 73 | + MPIR_CHKLMEM_MALLOC(send_sched, depth * sizeof(int)); |
| 74 | + MPIR_CHKLMEM_MALLOC(next, (depth + 2) * sizeof(int)); |
| 75 | + MPIR_CHKLMEM_MALLOC(prev, (depth + 2) * sizeof(int)); |
| 76 | + MPIR_CHKLMEM_MALLOC(extra, depth * sizeof(int)); |
| 77 | + |
| 78 | + // Precalculate skips (roughly doubling) |
| 79 | + skips[depth] = comm_size; |
| 80 | + for (int i = depth - 1; i >= 0; i--) { |
| 81 | + skips[i] = (skips[i+1] / 2) + (skips[i+1] & 0x1); |
| 82 | + } |
| 83 | + |
| 84 | + // Generate send and receive schedules |
| 85 | + struct sched_args_t args = { |
| 86 | + skips, send_sched, next + 1, prev + 1, extra, |
| 87 | + depth, comm_size |
| 88 | + }; |
| 89 | + gen_rsched(rank, recv_sched, &args); |
| 90 | + gen_ssched(rank, &args); |
| 91 | + |
| 92 | + // Datatype Handling: |
| 93 | + MPI_Aint type_size; |
| 94 | + int is_contig; |
| 95 | + int buf_size; |
| 96 | + |
| 97 | + MPIR_Datatype_get_size_macro(datatype, type_size); |
| 98 | + buf_size = count * type_size; |
| 99 | + |
| 100 | + if (buf_size == 0) goto dealloc; |
| 101 | + |
| 102 | + if (HANDLE_IS_BUILTIN(datatype)) |
| 103 | + is_contig = 1; |
| 104 | + else { |
| 105 | + MPIR_Datatype_is_contig(datatype, &is_contig); |
| 106 | + } |
| 107 | + void* tmp_buf; |
| 108 | + if (is_contig) { |
| 109 | + tmp_buf = buffer; |
| 110 | + } else { |
| 111 | + MPIR_CHKLMEM_MALLOC(tmp_buf, buf_size); |
| 112 | + if (rank == root) { |
| 113 | + mpi_errno = MPIR_Localcopy(buffer, count, datatype, tmp_buf, buf_size, MPIR_BYTE_INTERNAL); |
| 114 | + MPIR_ERR_CHECK(mpi_errno); |
| 115 | + } |
| 116 | + } |
| 117 | + |
| 118 | + // Handle pipeline chunks |
| 119 | + int n_chunk; |
| 120 | + int last_msg_size; |
| 121 | + |
| 122 | + if (chunk_size == 0) { |
| 123 | + n_chunk = 1; |
| 124 | + last_msg_size = buf_size; |
| 125 | + } else { |
| 126 | + n_chunk = (buf_size / chunk_size) + (buf_size % chunk_size != 0); |
| 127 | + last_msg_size = (buf_size % chunk_size == 0) |
| 128 | + ? chunk_size |
| 129 | + : buf_size % chunk_size; |
| 130 | + } |
| 131 | + |
| 132 | + char* can_send; |
| 133 | + MPIR_CHKLMEM_MALLOC(can_send, n_chunk * sizeof(char)); |
| 134 | + for (int i = 0; i < n_chunk; i++) { |
| 135 | + can_send[i] = (rank == root); |
| 136 | + } |
| 137 | + |
| 138 | + // Run schedule |
| 139 | + int x = (((depth - ((n_chunk - 1) % depth)) % depth) + depth) % depth; |
| 140 | + int offset = -x; |
| 141 | + |
| 142 | + int tru_ql = q_len; |
| 143 | + if (tru_ql < 1) tru_ql = 1; |
| 144 | + |
| 145 | + struct queue_tracker_t* requests; |
| 146 | + MPIR_CHKLMEM_MALLOC(requests, tru_ql * sizeof(struct queue_tracker_t)); |
| 147 | + for (int i = 0; i < tru_ql; i++) { |
| 148 | + requests[i].need_wait = 0; |
| 149 | + } |
| 150 | + |
| 151 | + int q_head = 0; |
| 152 | + int q_tail = 0; |
| 153 | + int q_used = 0; |
| 154 | + for (int i = x; i < n_chunk - 1 + depth + x; i++) { |
| 155 | + int k = i % depth; |
| 156 | + |
| 157 | + if (send_sched[k] + offset >= 0) { |
| 158 | + int peer = (rank + skips[k]) % comm_size; |
| 159 | + if (peer) { |
| 160 | + int send_block = send_sched[k] + offset; |
| 161 | + if (send_block >= n_chunk) send_block = n_chunk - 1; |
| 162 | + int msg_size = (send_block != n_chunk - 1) ? chunk_size : last_msg_size; |
| 163 | + |
| 164 | + if (can_send[send_block] == 0) { |
| 165 | + for (int j = 0; j < tru_ql; j++) { |
| 166 | + if (requests[j].chunk_id == send_block) { |
| 167 | + mpi_errno = MPIC_Wait(requests[j].req); |
| 168 | + MPIR_ERR_CHECK(mpi_errno); |
| 169 | + requests[j].need_wait = 0; |
| 170 | + MPIR_Request_free(requests[j].req); |
| 171 | + |
| 172 | + can_send[send_block] = 1; |
| 173 | + break; |
| 174 | + } |
| 175 | + } |
| 176 | + } |
| 177 | + |
| 178 | + mpi_errno = MPIC_Isend(((char*) tmp_buf) + (chunk_size * send_block), msg_size, MPIR_BYTE_INTERNAL, peer, MPIR_BCAST_TAG, comm, &(requests[q_head].req), coll_attr); |
| 179 | + MPIR_ERR_CHECK(mpi_errno); |
| 180 | + requests[q_head].chunk_id = -1; |
| 181 | + requests[q_head].need_wait = 1; |
| 182 | + |
| 183 | + q_head = (q_head + 1) % tru_ql; |
| 184 | + q_used = 1; |
| 185 | + } |
| 186 | + } |
| 187 | + |
| 188 | + if (q_used && q_head == q_tail) { |
| 189 | + if (requests[q_tail].need_wait) { |
| 190 | + mpi_errno = MPIC_Wait(requests[q_tail].req); |
| 191 | + MPIR_ERR_CHECK(mpi_errno); |
| 192 | + requests[q_tail].need_wait = 0; |
| 193 | + MPIR_Request_free(requests[q_tail].req); |
| 194 | + } |
| 195 | + |
| 196 | + if (requests[q_tail].chunk_id != -1) { |
| 197 | + can_send[requests[q_tail].chunk_id] = 1; |
| 198 | + } |
| 199 | + |
| 200 | + q_tail = (q_tail + 1) % tru_ql; |
| 201 | + } |
| 202 | + |
| 203 | + if (recv_sched[k] + offset >= 0 && (rank != root)) { |
| 204 | + int peer = (rank - skips[k] + comm_size) % comm_size; |
| 205 | + |
| 206 | + int recv_block = recv_sched[k] + offset; |
| 207 | + if (recv_block >= n_chunk) recv_block = n_chunk - 1; |
| 208 | + int msg_size = (recv_block != n_chunk - 1) ? chunk_size : last_msg_size; |
| 209 | + |
| 210 | + mpi_errno = MPIC_Irecv(((char*) tmp_buf) + (chunk_size * recv_block), msg_size, MPIR_BYTE_INTERNAL, peer, MPIR_BCAST_TAG, comm, &(requests[q_head].req)); |
| 211 | + MPIR_ERR_CHECK(mpi_errno); |
| 212 | + requests[q_head].chunk_id = recv_block; |
| 213 | + requests[q_head].need_wait = 1; |
| 214 | + |
| 215 | + q_head = (q_head + 1) % tru_ql; |
| 216 | + q_used = 1; |
| 217 | + } |
| 218 | + |
| 219 | + if (q_used && q_head == q_tail) { |
| 220 | + if (requests[q_tail].need_wait) { |
| 221 | + mpi_errno = MPIC_Wait(requests[q_tail].req); |
| 222 | + MPIR_ERR_CHECK(mpi_errno); |
| 223 | + requests[q_tail].need_wait = 0; |
| 224 | + MPIR_Request_free(requests[q_tail].req); |
| 225 | + } |
| 226 | + |
| 227 | + if (requests[q_tail].chunk_id != -1) { |
| 228 | + can_send[requests[q_tail].chunk_id] = 1; |
| 229 | + } |
| 230 | + |
| 231 | + q_tail = (q_tail + 1) % tru_ql; |
| 232 | + } |
| 233 | + |
| 234 | + if (k == depth - 1) { |
| 235 | + offset += depth; |
| 236 | + } |
| 237 | + } |
| 238 | + |
| 239 | + for (int i = 0; i < tru_ql; i++) { |
| 240 | + if (requests[i].need_wait) { |
| 241 | + mpi_errno = MPIC_Wait(requests[i].req); |
| 242 | + MPIR_ERR_CHECK(mpi_errno); |
| 243 | + MPIR_Request_free(requests[i].req); |
| 244 | + } |
| 245 | + } |
| 246 | + |
| 247 | + if (!is_contig) { |
| 248 | + mpi_errno = MPIR_Localcopy(tmp_buf, buf_size, MPIR_BYTE_INTERNAL, buffer, count, datatype); |
| 249 | + MPIR_ERR_CHECK(mpi_errno); |
| 250 | + } |
| 251 | + |
| 252 | +dealloc: |
| 253 | + MPIR_CHKLMEM_FREEALL(); |
| 254 | + |
| 255 | +fn_exit: |
| 256 | + return mpi_errno; |
| 257 | +fn_fail: |
| 258 | + printf("saude :(\n"); |
| 259 | + goto fn_exit; |
| 260 | +} |
| 261 | + |
| 262 | +//////// HELPER FUNCTIONS //////// |
| 263 | +static int all_blocks(int r, int r_, int s, int e, int k, int* buffer, struct sched_args_t* args) { |
| 264 | + while (e != -1) { |
| 265 | + if ((r_ + args->skips[e] <= r - args->skips[k]) |
| 266 | + && (r_ + args->skips[e] < s)) { |
| 267 | + if (r_ + args->skips[e] <= r - args->skips[k+1]) { |
| 268 | + k = all_blocks(r, r_ + args->skips[e], s, e, k, buffer, args); |
| 269 | + } |
| 270 | + if (r_ > r - args->skips[k+1]) { |
| 271 | + return k; |
| 272 | + } |
| 273 | + s = r_ + args->skips[e]; |
| 274 | + buffer[k] = e; |
| 275 | + k += 1; |
| 276 | + args->next[args->prev[e]] = args->next[e]; |
| 277 | + args->prev[args->next[e]] = args->prev[e]; |
| 278 | + } |
| 279 | + e = args->next[e]; |
| 280 | + } |
| 281 | + return k; |
| 282 | +} |
| 283 | + |
| 284 | +static void gen_rsched(int r, int* buffer, struct sched_args_t* args) { |
| 285 | + for (int i = 0; i <= args->tree_depth; i++) { |
| 286 | + args->next[i] = i - 1; |
| 287 | + args->prev[i] = i + 1; |
| 288 | + } |
| 289 | + args->prev[args->tree_depth] = -1; |
| 290 | + args->next[-1] = args->tree_depth; |
| 291 | + args->prev[-1] = 0; |
| 292 | + |
| 293 | + int b = get_baseblock(r, args); |
| 294 | + |
| 295 | + args->next[args->prev[b]] = args->next[b]; |
| 296 | + args->prev[args->next[b]] = args->prev[b]; |
| 297 | + |
| 298 | + all_blocks(args->comm_size + r, 0, args->comm_size * 2, args->tree_depth, 0, buffer, args); |
| 299 | + |
| 300 | + for (int i = 0; i < args->tree_depth; i++) { |
| 301 | + if (buffer[i] == args->tree_depth) { |
| 302 | + buffer[i] = b; |
| 303 | + } else { |
| 304 | + buffer[i] = buffer[i] - args->tree_depth; |
| 305 | + } |
| 306 | + } |
| 307 | +} |
| 308 | + |
| 309 | +static void gen_ssched(int r, struct sched_args_t* args) { |
| 310 | + if (r == 0) { |
| 311 | + for (int i = 0; i < args->tree_depth; i++) { |
| 312 | + args->send_sched[i] = i; |
| 313 | + } |
| 314 | + return; |
| 315 | + } |
| 316 | + |
| 317 | + int b = get_baseblock(r, args); |
| 318 | + |
| 319 | + int r_ = r; |
| 320 | + int c = b; |
| 321 | + int e = args->comm_size; |
| 322 | + for (int i = args->tree_depth - 1; i > 0; i--) { |
| 323 | + if (r_ < args->skips[i]) { |
| 324 | + if ((r_ + args->skips[i] < e) |
| 325 | + || (e < args->skips[i-1]) |
| 326 | + || ((i == 1) |
| 327 | + && (b > 0))) { |
| 328 | + args->send_sched[i] = c; |
| 329 | + } else { |
| 330 | + gen_rsched((r + args->skips[i]) % args->comm_size, args->extra, args); |
| 331 | + args->send_sched[i] = args->extra[i]; |
| 332 | + } |
| 333 | + if (e > args->skips[i]) { |
| 334 | + e = args->skips[i]; |
| 335 | + } |
| 336 | + } else { |
| 337 | + c = i - args->tree_depth; |
| 338 | + e = e - args->skips[i]; |
| 339 | + if ((r_ > args->skips[i]) |
| 340 | + || (r_ <= e) |
| 341 | + || (i == 1) |
| 342 | + || (e < args->skips[i-1])) { |
| 343 | + args->send_sched[i] = c; |
| 344 | + } else { |
| 345 | + gen_rsched((r + args->skips[i]) % args->comm_size, args->extra, args); |
| 346 | + args->send_sched[i] = args->extra[i]; |
| 347 | + } |
| 348 | + r_ -= args->skips[i]; |
| 349 | + } |
| 350 | + } |
| 351 | + args->send_sched[0] = b - args->tree_depth; |
| 352 | +} |
| 353 | + |
| 354 | +static int get_baseblock(int r, struct sched_args_t* args) { |
| 355 | + int r_ = 0; |
| 356 | + for (int i = args->tree_depth - 1; i >= 0; i--) { |
| 357 | + if (r_ + args->skips[i] == r) { |
| 358 | + return i; |
| 359 | + } else if (r_ + args->skips[i] < r) { |
| 360 | + r_ += args->skips[i]; |
| 361 | + } |
| 362 | + } |
| 363 | + return args->tree_depth; |
| 364 | +} |
0 commit comments