@@ -48,7 +48,8 @@ user for an item.
4848
4949<div data-lang =" scala " markdown =" 1 " >
5050In the following example we load rating data. Each row consists of a user, a product and a rating.
51- We use the default ALS.train() method which assumes ratings are explicit. We evaluate the
51+ We use the default [ ALS.train()] ( api/mllib/index.html#org.apache.spark.mllib.recommendation.ALS$ )
52+ method which assumes ratings are explicit. We evaluate the
5253recommendation model by measuring the Mean Squared Error of rating prediction.
5354
5455{% highlight scala %}
@@ -62,8 +63,9 @@ val ratings = data.map(_.split(',') match {
6263})
6364
6465// Build the recommendation model using ALS
66+ val rank = 10
6567val numIterations = 20
66- val model = ALS.train(ratings, 1, 20 , 0.01)
68+ val model = ALS.train(ratings, rank, numIterations , 0.01)
6769
6870// Evaluate the model on rating data
6971val usersProducts = ratings.map{ case Rating(user, product, rate) => (user, product)}
@@ -83,7 +85,7 @@ If the rating matrix is derived from other source of information (i.e., it is in
8385other signals), you can use the trainImplicit method to get better results.
8486
8587{% highlight scala %}
86- val model = ALS.trainImplicit(ratings, 1, 20 , 0.01)
88+ val model = ALS.trainImplicit(ratings, rank, numIterations , 0.01)
8789{% endhighlight %}
8890</div >
8991
@@ -108,7 +110,9 @@ data = sc.textFile("mllib/data/als/test.data")
108110ratings = data.map(lambda line: array([ float(x) for x in line.split(',')] ))
109111
110112# Build the recommendation model using Alternating Least Squares
111- model = ALS.train(ratings, 1, 20)
113+ rank = 10
114+ numIterations = 20
115+ model = ALS.train(ratings, rank, numIterations)
112116
113117# Evaluate the model on training data
114118testdata = ratings.map(lambda p: (int(p[ 0] ), int(p[ 1] )))
@@ -123,7 +127,7 @@ signals), you can use the trainImplicit method to get better results.
123127
124128{% highlight python %}
125129# Build the recommendation model using Alternating Least Squares based on implicit ratings
126- model = ALS.trainImplicit(ratings, 1, 20 )
130+ model = ALS.trainImplicit(ratings, rank, numIterations )
127131{% endhighlight %}
128132</div >
129133
0 commit comments