You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
We also provide the ImageNet classification pre-trained weights of the CSPNeXt backbone. Find more details in [RTMDet](https://github.com/open-mmlab/mmdetection/blob/dev-3.x/configs/rtmdet/README.md#classification).
214
+
We also provide the ImageNet classification pre-trained weights of the CSPNeXt backbone. Find more details in [RTMDet](https://github.com/open-mmlab/mmdetection/blob/latest/configs/rtmdet/README.md#classification).
tar -xzvf mmdeploy-1.0.0rc3-linux-x86_64-cuda11.1-tensorrt8.2.3.0.tar.gz
286
+
tar -xzvf mmdeploy-1.0.0-linux-x86_64-cxx11abi-cuda11.3.tar.gz
287
287
288
288
# Go to the sdk folder
289
-
cd mmdeploy-1.0.0rc3-linux-x86_64-cuda11.1-tensorrt8.2.3.0/sdk
289
+
cd mmdeploy-1.0.0-linux-x86_64-cxx11abi-cuda11.3
290
290
291
291
# Init environment
292
-
sourceenv.sh
292
+
sourceset_env.sh
293
293
294
294
# If opencv 3+ is not installed on your system, execute the following command.
295
295
# If it is installed, skip this command
296
-
bash opencv.sh
296
+
bash install_opencv.sh
297
297
298
298
# Compile executable programs
299
-
bash build.sh
299
+
bash build_sdk.sh
300
300
301
301
# Inference for an image
302
302
# Please pass the folder of the model, not the model file
@@ -313,23 +313,23 @@ For details, see [Pipeline Inference](#-step4-pipeline-inference).
313
313
314
314
##### Python Inference
315
315
316
-
1. Download the [pre-compiled SDK](https://github.com/open-mmlab/mmdeploy/releases).
317
-
2. Unzip the SDK and go to the `sdk/python` folder.
318
-
3. Install `mmdeploy_python` via `.whl` file.
316
+
1. Install mmdeploy_runtime or mmdeploy_runtime_gpu
319
317
320
-
```shell
321
-
pip install {file_name}.whl
322
318
```
319
+
# for onnxruntime
320
+
pip install mmdeploy-runtime
321
+
# download [sdk](https://github.com/open-mmlab/mmdeploy/releases/download/v1.0.0/mmdeploy-1.0.0-windows-amd64.zip) add third party runtime libraries to the PATH
323
322
324
-
4. Download the [sdk models](https://download.openmmlab.com/mmpose/v1/projects/rtmpose/rtmpose-cpu.zip) and unzip.
325
-
5. Inference with `pose_tracker.py`:
326
-
327
-
**Note:**
323
+
# for onnxruntime-gpu / tensorrt
324
+
pip install mmdeploy-runtime-gpu
325
+
# download [sdk](https://github.com/open-mmlab/mmdeploy/releases/download/v1.0.0/mmdeploy-1.0.0-windows-amd64.zip) add third party runtime libraries to the PATH
326
+
```
328
327
329
-
- If you meet `ImportError: DLL load failed while importing mmdeploy_python`, please copy `thirdparty/onnxruntime/lib/onnxruntime.dll` to `site-packages/mmdeploy_python/` of your current Python env.
328
+
2. Download the [sdk models](https://download.openmmlab.com/mmpose/v1/projects/rtmpose/rtmpose-cpu.zip) and unzip.
329
+
3. Inference with `pose_tracker.py`:
330
330
331
331
```shell
332
-
# go to ./sdk/example/python
332
+
# go to ./example/python
333
333
# Please pass the folder of the model, not the model file
334
334
python pose_tracker.py cpu {det work-dir} {pose work-dir} {your_video.mp4}
Before starting the deployment, please make sure you install MMPose-1.x and MMDeploy-1.x correctly.
422
+
Before starting the deployment, please make sure you install MMPose and MMDeploy correctly.
423
423
424
-
- Install MMPose-1.x, please refer to the [MMPose-1.x installation guide](https://mmpose.readthedocs.io/en/latest/installation.html).
425
-
- Install MMDeploy-1.x, please refer to the [MMDeploy-1.x installation guide](https://mmdeploy.readthedocs.io/en/1.x/get_started.html#installation).
424
+
- Install MMPose, please refer to the [MMPose installation guide](https://mmpose.readthedocs.io/en/latest/installation.html).
425
+
- Install MMDeploy, please refer to the [MMDeploy installation guide](https://mmdeploy.readthedocs.io/en/latest/get_started.html#installation).
426
426
427
427
Depending on the deployment backend, some backends require compilation of custom operators, so please refer to the corresponding document to ensure the environment is built correctly according to your needs:
After the installation, you can enjoy the model deployment journey starting from converting PyTorch model to backend model by running MMDeploy's `tools/deploy.py`.
437
437
438
-
The detailed model conversion tutorial please refer to the [MMDeploy document](https://mmdeploy.readthedocs.io/en/1.x/02-how-to-run/convert_model.html). Here we only give the example of converting RTMPose.
438
+
The detailed model conversion tutorial please refer to the [MMDeploy document](https://mmdeploy.readthedocs.io/en/latest/02-how-to-run/convert_model.html). Here we only give the example of converting RTMPose.
439
439
440
440
Here we take converting RTMDet-nano and RTMPose-m to ONNX/TensorRT as an example.
441
441
442
442
- If you only want to use ONNX, please use:
443
-
-[`detection_onnxruntime_static.py`](https://github.com/open-mmlab/mmdeploy/blob/1.x/configs/mmdet/detection/detection_onnxruntime_static.py) for RTMDet.
444
-
-[`pose-detection_simcc_onnxruntime_dynamic.py`](https://github.com/open-mmlab/mmdeploy/blob/1.x/configs/mmpose/pose-detection_simcc_onnxruntime_dynamic.py) for RTMPose.
443
+
-[`detection_onnxruntime_static.py`](https://github.com/open-mmlab/mmdeploy/blob/main/configs/mmdet/detection/detection_onnxruntime_static.py) for RTMDet.
444
+
-[`pose-detection_simcc_onnxruntime_dynamic.py`](https://github.com/open-mmlab/mmdeploy/blob/main/configs/mmpose/pose-detection_simcc_onnxruntime_dynamic.py) for RTMPose.
445
445
- If you want to use TensorRT, please useοΌ
446
-
-[`detection_tensorrt_static-320x320.py`](https://github.com/open-mmlab/mmdeploy/blob/1.x/configs/mmdet/detection/detection_tensorrt_static-320x320.py) for RTMDet.
447
-
-[`pose-detection_simcc_tensorrt_dynamic-256x192.py`](https://github.com/open-mmlab/mmdeploy/blob/1.x/configs/mmpose/pose-detection_simcc_tensorrt_dynamic-256x192.py) for RTMPose.
446
+
-[`detection_tensorrt_static-320x320.py`](https://github.com/open-mmlab/mmdeploy/blob/main/configs/mmdet/detection/detection_tensorrt_static-320x320.py) for RTMDet.
447
+
-[`pose-detection_simcc_tensorrt_dynamic-256x192.py`](https://github.com/open-mmlab/mmdeploy/blob/main/configs/mmpose/pose-detection_simcc_tensorrt_dynamic-256x192.py) for RTMPose.
448
448
449
-
If you want to customize the settings in the deployment config for your requirements, please refer to [MMDeploy config tutorial](https://mmdeploy.readthedocs.io/en/1.x/02-how-to-run/write_config.html).
449
+
If you want to customize the settings in the deployment config for your requirements, please refer to [MMDeploy config tutorial](https://mmdeploy.readthedocs.io/en/latest/02-how-to-run/write_config.html).
If you want to learn more details of profiler, you can refer to the [Profiler Docs](https://mmdeploy.readthedocs.io/en/1.x/02-how-to-run/useful_tools.html#profiler).
849
+
If you want to learn more details of profiler, you can refer to the [Profiler Docs](https://mmdeploy.readthedocs.io/en/latest/02-how-to-run/useful_tools.html#profiler).
850
850
851
851
### π Model Test [π](#-table-of-contents)
852
852
@@ -860,7 +860,7 @@ python tools/test.py \
860
860
--device cpu
861
861
```
862
862
863
-
You can also refer to [MMDeploy Docs](https://github.com/open-mmlab/mmdeploy/blob/dev-1.x/docs/en/02-how-to-run/profile_model.md) for more details.
863
+
You can also refer to [MMDeploy Docs](https://github.com/open-mmlab/mmdeploy/blob/main/docs/en/02-how-to-run/profile_model.md) for more details.
0 commit comments