|
| 1 | +from abc import ABC, abstractmethod |
| 2 | +from functools import cached_property |
| 3 | +from typing import Optional, Tuple |
| 4 | + |
| 5 | +import numpy as np |
| 6 | + |
| 7 | +from omfiles.utils import _modulo_positive |
| 8 | + |
| 9 | + |
| 10 | +class AbstractGrid(ABC): |
| 11 | + """ |
| 12 | + Abstract base class for weather model grid definitions. |
| 13 | +
|
| 14 | + This defines the interface that all grid implementations must follow. |
| 15 | + """ |
| 16 | + |
| 17 | + @property |
| 18 | + @abstractmethod |
| 19 | + def grid_type(self) -> str: |
| 20 | + """Return the grid type identifier.""" |
| 21 | + pass |
| 22 | + |
| 23 | + @cached_property |
| 24 | + @abstractmethod |
| 25 | + def latitude(self) -> np.ndarray: |
| 26 | + """ |
| 27 | + Return the latitude coordinates array. |
| 28 | +
|
| 29 | + Uses cached_property to ensure the array is computed only once. |
| 30 | + """ |
| 31 | + pass |
| 32 | + |
| 33 | + @cached_property |
| 34 | + @abstractmethod |
| 35 | + def longitude(self) -> np.ndarray: |
| 36 | + """ |
| 37 | + Return the longitude coordinates array. |
| 38 | +
|
| 39 | + Uses cached_property to ensure the array is computed only once. |
| 40 | + """ |
| 41 | + pass |
| 42 | + |
| 43 | + @property |
| 44 | + @abstractmethod |
| 45 | + def shape(self) -> Tuple[int, int]: |
| 46 | + """Return the grid shape as (n_lat, n_lon).""" |
| 47 | + pass |
| 48 | + |
| 49 | + @abstractmethod |
| 50 | + def findPointXy(self, lat: float, lon: float) -> Optional[Tuple[int, int]]: |
| 51 | + """ |
| 52 | + Find grid point indices (x, y) for given lat/lon coordinates. |
| 53 | + """ |
| 54 | + pass |
| 55 | + |
| 56 | + @abstractmethod |
| 57 | + def getCoordinates(self, x: int, y: int) -> Tuple[float, float]: |
| 58 | + """ |
| 59 | + Get lat/lon coordinates for a given grid point indices. |
| 60 | + """ |
| 61 | + pass |
| 62 | + |
| 63 | + |
| 64 | + |
| 65 | +class RegularLatLonGrid(AbstractGrid): |
| 66 | + """ |
| 67 | + Regular latitude-longitude grid implementation. |
| 68 | +
|
| 69 | + This represents a standard equirectangular grid with uniform spacing. |
| 70 | + """ |
| 71 | + |
| 72 | + def __init__( |
| 73 | + self, |
| 74 | + lat_start: float, |
| 75 | + lat_steps: int, |
| 76 | + lat_step_size: float, |
| 77 | + lon_start: float, |
| 78 | + lon_steps: int, |
| 79 | + lon_step_size: float, |
| 80 | + ): |
| 81 | + """ |
| 82 | + Initialize a regular lat/lon grid. |
| 83 | +
|
| 84 | + Parameters: |
| 85 | + ----------- |
| 86 | + lat_start : float |
| 87 | + Starting latitude value |
| 88 | + lat_steps : int |
| 89 | + Number of latitude points |
| 90 | + lat_step_size : float |
| 91 | + Spacing between latitude points |
| 92 | + lon_start : float |
| 93 | + Starting longitude value |
| 94 | + lon_steps : int |
| 95 | + Number of longitude points |
| 96 | + lon_step_size : float |
| 97 | + Spacing between longitude points |
| 98 | + """ |
| 99 | + self._lat_start = lat_start |
| 100 | + self._lat_steps = lat_steps |
| 101 | + self._lat_step_size = lat_step_size |
| 102 | + self._lon_start = lon_start |
| 103 | + self._lon_steps = lon_steps |
| 104 | + self._lon_step_size = lon_step_size |
| 105 | + |
| 106 | + @property |
| 107 | + def grid_type(self) -> str: |
| 108 | + return "regular_latlon" |
| 109 | + |
| 110 | + @cached_property |
| 111 | + def latitude(self) -> np.ndarray: |
| 112 | + """ |
| 113 | + Lazily compute and cache the latitude coordinate array. |
| 114 | + """ |
| 115 | + return np.linspace( |
| 116 | + self._lat_start, |
| 117 | + self._lat_start + self._lat_step_size * self._lat_steps, |
| 118 | + self._lat_steps, |
| 119 | + endpoint=False |
| 120 | + ) |
| 121 | + |
| 122 | + @cached_property |
| 123 | + def longitude(self) -> np.ndarray: |
| 124 | + """ |
| 125 | + Lazily compute and cache the longitude coordinate array. |
| 126 | + """ |
| 127 | + return np.linspace( |
| 128 | + self._lon_start, |
| 129 | + self._lon_start + self._lon_step_size * self._lon_steps, |
| 130 | + self._lon_steps, |
| 131 | + endpoint=False |
| 132 | + ) |
| 133 | + |
| 134 | + @property |
| 135 | + def shape(self) -> Tuple[int, int]: |
| 136 | + return (self._lat_steps, self._lon_steps) |
| 137 | + |
| 138 | + def findPointXy(self, lat: float, lon: float) -> Optional[Tuple[int, int]]: |
| 139 | + """ |
| 140 | + Find grid point indices (x, y) for given lat/lon coordinates. |
| 141 | +
|
| 142 | + Parameters: |
| 143 | + ----------- |
| 144 | + lat : float |
| 145 | + Latitude in degrees |
| 146 | + lon : float |
| 147 | + Longitude in degrees |
| 148 | +
|
| 149 | + Returns: |
| 150 | + -------- |
| 151 | + tuple or None |
| 152 | + (x, y) grid indices if point is in grid, None otherwise |
| 153 | + """ |
| 154 | + # Calculate raw x and y indices |
| 155 | + x = int(round((lon - self._lon_start) / self._lon_step_size)) |
| 156 | + y = int(round((lat - self._lat_start) / self._lat_step_size)) |
| 157 | + |
| 158 | + # Handle wrapping for global grids |
| 159 | + xx = _modulo_positive(x, self._lon_steps) if (self._lon_steps * self._lon_step_size) >= 359 else x |
| 160 | + yy = _modulo_positive(y, self._lat_steps) if (self._lat_steps * self._lat_step_size) >= 179 else y |
| 161 | + |
| 162 | + # Check if point is within grid bounds |
| 163 | + if yy < 0 or xx < 0 or yy >= self._lat_steps or xx >= self._lon_steps: |
| 164 | + return None |
| 165 | + |
| 166 | + return (xx, yy) |
| 167 | + |
| 168 | + def getCoordinates(self, x: int, y: int) -> Tuple[float, float]: |
| 169 | + """ |
| 170 | + Get lat/lon coordinates for a given grid point indices. |
| 171 | +
|
| 172 | + Parameters: |
| 173 | + ----------- |
| 174 | + x : longitude index |
| 175 | + y : latitude index |
| 176 | +
|
| 177 | + Returns: |
| 178 | + -------- |
| 179 | + tuple |
| 180 | + (latitude, longitude) coordinates |
| 181 | + """ |
| 182 | + |
| 183 | + lat = self._lat_start + float(y) * self._lat_step_size |
| 184 | + lon = self._lon_start + float(x) * self._lon_step_size |
| 185 | + |
| 186 | + return (lat, lon) |
| 187 | + |
| 188 | +class OmDomain: |
| 189 | + """ |
| 190 | + Class representing a domain configuration for a weather model. |
| 191 | +
|
| 192 | + This class provides metadata and configuration for different |
| 193 | + weather model grids used in Open-Meteo. |
| 194 | + """ |
| 195 | + |
| 196 | + def __init__( |
| 197 | + self, |
| 198 | + name: str, |
| 199 | + grid: AbstractGrid, |
| 200 | + file_length: int, |
| 201 | + temporal_resolution_seconds: int = 3600 |
| 202 | + ): |
| 203 | + """ |
| 204 | + Initialize a domain configuration. |
| 205 | +
|
| 206 | + Parameters: |
| 207 | + ----------- |
| 208 | + name : str |
| 209 | + Name of the domain |
| 210 | + grid : AbstractGrid |
| 211 | + Grid implementation for this domain |
| 212 | + file_length : int |
| 213 | + Number of time steps in each file chunk |
| 214 | + description : str, optional |
| 215 | + Human-readable description of the domain |
| 216 | + variables : list, optional |
| 217 | + List of variable names available in this domain |
| 218 | + temporal_resolution_seconds : int, optional |
| 219 | + Time resolution in seconds (default: 3600 = 1 hour) |
| 220 | + """ |
| 221 | + self.name = name |
| 222 | + self.grid = grid |
| 223 | + self.file_length = file_length |
| 224 | + self.temporal_resolution_seconds = temporal_resolution_seconds |
| 225 | + |
| 226 | + def time_to_chunk_index(self, timestamp: np.datetime64) -> int: |
| 227 | + """ |
| 228 | + Convert a timestamp to a chunk index. |
| 229 | +
|
| 230 | + Parameters: |
| 231 | + ----------- |
| 232 | + timestamp : np.datetime64 |
| 233 | + The timestamp to convert |
| 234 | +
|
| 235 | + Returns: |
| 236 | + -------- |
| 237 | + int |
| 238 | + The chunk index containing the timestamp |
| 239 | + """ |
| 240 | + # Basic implementation - can be extended with domain-specific logic |
| 241 | + epoch = np.datetime64('1970-01-01T00:00:00') |
| 242 | + seconds_since_epoch = (timestamp - epoch) / np.timedelta64(1, 's') |
| 243 | + |
| 244 | + # Get temporal resolution from metadata (placeholder - real implementation would get from metadata) |
| 245 | + temporal_resolution = 3600 # 1 hour in seconds |
| 246 | + |
| 247 | + # Calculate chunk index |
| 248 | + chunk_index = int(seconds_since_epoch / (self.file_length * temporal_resolution)) |
| 249 | + return chunk_index |
| 250 | + |
| 251 | + def get_chunk_time_range(self, chunk_index: int, temporal_resolution_seconds: int = 3600) -> np.ndarray: |
| 252 | + """ |
| 253 | + Get the time range covered by a specific chunk. |
| 254 | +
|
| 255 | + Parameters: |
| 256 | + ----------- |
| 257 | + chunk_index : int |
| 258 | + Index of the chunk |
| 259 | + temporal_resolution_seconds : int, optional |
| 260 | + Time resolution in seconds (default: 3600 = 1 hour) |
| 261 | +
|
| 262 | + Returns: |
| 263 | + -------- |
| 264 | + np.ndarray |
| 265 | + Array of datetime64 objects representing the time points in the chunk |
| 266 | + """ |
| 267 | + epoch = np.datetime64('1970-01-01T00:00:00') |
| 268 | + chunk_start_seconds = chunk_index * self.file_length * temporal_resolution_seconds |
| 269 | + start_time = epoch + np.timedelta64(chunk_start_seconds, 's') |
| 270 | + |
| 271 | + # Create array of time points |
| 272 | + time_points = start_time + np.arange(self.file_length) * np.timedelta64(temporal_resolution_seconds, 's') |
| 273 | + return time_points |
| 274 | + |
| 275 | +# - MARK: Create grid instances for supported domains |
| 276 | + |
| 277 | +# DWD ICON D2 is regularized during download to nx: 1215, ny: 746 points |
| 278 | +# https://github.com/open-meteo/open-meteo/blob/1753ebb4966d05f61b17dd5bdf59700788d4a913/Sources/App/Icon/Icon.swift#L154 |
| 279 | +_dwd_icon_d2_grid = RegularLatLonGrid( |
| 280 | + lat_start=43.18, |
| 281 | + lat_steps=746, |
| 282 | + lat_step_size=0.02, |
| 283 | + lon_start=-3.94, |
| 284 | + lon_steps=1215, |
| 285 | + lon_step_size=0.02 |
| 286 | +) |
| 287 | + |
| 288 | +# ECMWF IQFS grid is a regular global lat/lon grid, nx: 1440, ny: 721 points |
| 289 | +# https://github.com/open-meteo/open-meteo/blob/1753ebb4966d05f61b17dd5bdf59700788d4a913/Sources/App/Ecmwf/EcmwfDomain.swift#L107 |
| 290 | +_ecmwf_ifs025_grid = RegularLatLonGrid( |
| 291 | + lat_start=-90, |
| 292 | + lat_steps=721, |
| 293 | + lat_step_size=360/1440, |
| 294 | + lon_start=-180, |
| 295 | + lon_steps=1440, |
| 296 | + lon_step_size=180/(721-1) |
| 297 | +) |
| 298 | + |
| 299 | +DOMAINS: dict[str, OmDomain] = { |
| 300 | + 'dwd_icon_d2': OmDomain( |
| 301 | + name='dwd_icon_d2', |
| 302 | + grid=_dwd_icon_d2_grid, |
| 303 | + file_length=121, |
| 304 | + temporal_resolution_seconds=3600 # 1 hour |
| 305 | + ), |
| 306 | + 'ecmwf_ifs025': OmDomain( |
| 307 | + name='ecmwf_ifs025', |
| 308 | + grid=_ecmwf_ifs025_grid, |
| 309 | + file_length=104, |
| 310 | + temporal_resolution_seconds=3600 # 1 hour |
| 311 | + ), |
| 312 | + # Additional domains can be added here |
| 313 | +} |
0 commit comments