diff --git a/docs/api/ar/math/Matrix4.html b/docs/api/ar/math/Matrix4.html
index 7af425235be813..1403f7ac8f7209 100644
--- a/docs/api/ar/math/Matrix4.html
+++ b/docs/api/ar/math/Matrix4.html
@@ -194,20 +194,85 @@
يستخرج[link:https://en.wikipedia.org/wiki/Basis_(linear_algebra) basis]
من هذه المصفوفة في المتجهات الثلاثة المحورية المقدمة. إذا كانت هذه المصفوفة
- :
-
- a، b، c، d،
- e، f، g، h،
- i، j، k، l،
- m، n، o، p
-
+ :
+
+
+
ثم سيتم تعيين[page:Vector3 xAxis] ،[page:Vector3 yAxis] ،[page:Vector3 zAxis]
- إلى:
-
- xAxis = (a, e, i)
- yAxis = (b, f, j)
- zAxis = (c, g, k)
-
+ إلى:
+
+ ,
+
+ , and
+
+
[method:this extractRotation]( [param:Matrix4 m] )
@@ -272,13 +337,40 @@
قم بتعيين هذا إلى [link:https://en.wikipedia.org/wiki/Basis_(linear_algebra) basis]
- مصفوفة تتكون من المتجهات الأساسية الثلاثة المقدمة:
-
- xAxis.x، yAxis.x، zAxis.x، 0،
- xAxis.y، yAxis.y، zAxis.y، 0،
- xAxis.z، yAxis.z، zAxis.z، 0،
- 0, 0, 0, 1
-
+ مصفوفة تتكون من المتجهات الأساسية الثلاثة المقدمة:
+
+
@@ -314,13 +406,136 @@ [method:this makeRotationFromQuaternion]( [param:Quaternion q] )
[page:Quaternion q] ، كما هو مبين
[link:https://en.wikipedia.org/wiki/Rotation_matrix#Quaternion هنا]. ال
باقي من المصفوفة يتم تعيينه إلى المعرف. لذلك ، بالنظر إلى[page:Quaternion q] =
- w + xi + yj + zk ، فإن المصفوفة الناتجة ستكون:
-
-1-2y²-2z² 2xy-2zw 2xz+2yw 0
-2xy+2zw 1-2x²-2z² 2yz-2xw 0
-2xz-2yw 2yz+2xw 1-2x²-2y² 0
- 0 0 0 1
-
+ w + xi + yj + zk ، فإن المصفوفة الناتجة ستكون:
+
+
[method:this makeRotationX]( [param:Float theta] )
@@ -328,13 +543,61 @@ [method:this makeRotationX]( [param:Float theta] )
[page:Float theta] - زاوية الدوران بالراديان.
يضع هذه المصفوفة كتحويل دوران حول محور X بواسطة
- [page:Float theta] (θ) راديان. المصفوفة الناتجة ستكون:
-
-1 0 0 0
-0 cos(θ) -sin(θ) 0
-0 sin(θ) cos(θ) 0
-0 0 0 1
-
+ [page:Float theta] (θ) راديان. المصفوفة الناتجة ستكون:
+
+
[method:this makeRotationY]( [param:Float theta] )
@@ -342,11 +605,61 @@ [method:this makeRotationY]( [param:Float theta] )
[page:Float theta] - زاوية الدوران بالراديان.
يضع هذه المصفوفة كتحويل دوران حول محور Y بواسطة
- [page:Float theta] (θ) راديان. المصفوفة الناتجة ستكون:
-
- cos(θ) 0 sin(θ) 0 0 1 0 0 -sin(θ) 0 cos(θ) 0 0 0
- 0 1
-
+ [page:Float theta] (θ) راديان. المصفوفة الناتجة ستكون:
+
+
[method:this makeRotationZ]( [param:Float theta] )
@@ -354,13 +667,61 @@ [method:this makeRotationZ]( [param:Float theta] )
[page:Float theta] - زاوية الدوران بالراديان.
يضع هذه المصفوفة كتحويل دوران حول محور Z بواسطة
- [page:Float theta] (θ) راديان. المصفوفة الناتجة ستكون:
-
-cos(θ) -sin(θ) 0 0
-sin(θ) cos(θ) 0 0
-0 0 1 0
-0 0 0 1
-
+ [page:Float theta] (θ) راديان. المصفوفة الناتجة ستكون:
+
+
@@ -371,13 +732,40 @@
[page:Float y] - المقدار الذي يجب تغييره في محور Y.
[page:Float z] - المقدار الذي يجب تغييره في محور Z.
- يضع هذه المصفوفة كتحويل قياس:
-
- x، 0، 0، 0،
- 0، y، 0، 0،
- 0، 0، z، 0،
- 0، 0، 0، 1
-
+ يضع هذه المصفوفة كتحويل قياس:
+
+
@@ -392,12 +780,40 @@
[page:Float zx] - المقدار الذي يجب قصه Z بواسطة X.
[page:Float zy] - المقدار الذي يجب قصه Z بواسطة Y.
- يضع هذه المصفوفة كتحويل قص:
-
- 1، yx، zx، 0،
- xy، 1، zy، 0،
- xz، yz، 1، 0،
- 0، 0، 0، 1
+ يضع هذه المصفوفة كتحويل قص:
+
+
[method:this makeTranslation]( [param:Vector3 v] )
@@ -405,12 +821,40 @@
[method:this makeTranslation]( [param:Float x], [param:Float y], [param:Float z] ) // واجهة برمجة التطبيقات الاختيارية
- يضع هذه المصفوفة كتحويل ترجمة من متجه [page:Vector3 v] ، أو أرقام [page:Float x] ، [page:Float y] و [page:Float z]:
-
- 1، 0، 0، x،
- 0، 1، 0، y،
- 0، 0، 1، z،
- 0، 0، 0، 1
+ يضع هذه المصفوفة كتحويل ترجمة من متجه [page:Vector3 v] ، أو أرقام [page:Float x] ، [page:Float y] و [page:Float z]:
+
+
[method:this multiply]( [param:Matrix4 m] )
@@ -453,18 +897,75 @@
يضع مكون الموضع لهذه المصفوفة من المتجه [page:Vector3 v] ،
دون التأثير على بقية المصفوفة - أي إذا كانت المصفوفة هي
- حاليا:
-
- a, b, c, d,
- e, f, g, h,
- i, j, k, l,
- m, n, o, p
- هذا يصبح:
-
- a, b, c, v.x,
- e, f, g, v.y,
- i, j, k, v.z,
- m, n, o, p
+ حاليا:
+
+
+
+ هذا يصبح:
+
+
diff --git a/docs/api/en/math/Matrix4.html b/docs/api/en/math/Matrix4.html
index 6516f522300649..08fb379b4df6f2 100644
--- a/docs/api/en/math/Matrix4.html
+++ b/docs/api/en/math/Matrix4.html
@@ -191,18 +191,85 @@
Extracts the [link:https://en.wikipedia.org/wiki/Basis_(linear_algebra) basis]
of this matrix into the three axis vectors provided. If this matrix
- is:
-
-a, b, c, d,
-e, f, g, h,
-i, j, k, l,
-m, n, o, p
+ is:
+
+
+
then the [page:Vector3 xAxis], [page:Vector3 yAxis], [page:Vector3 zAxis]
- will be set to:
-
-xAxis = (a, e, i)
-yAxis = (b, f, j)
-zAxis = (c, g, k)
+ will be set to:
+
+ ,
+
+ , and
+
+
[method:this extractRotation]( [param:Matrix4 m] )
@@ -268,13 +335,40 @@
Set this to the [link:https://en.wikipedia.org/wiki/Basis_(linear_algebra) basis]
- matrix consisting of the three provided basis vectors:
-
-xAxis.x, yAxis.x, zAxis.x, 0,
-xAxis.y, yAxis.y, zAxis.y, 0,
-xAxis.z, yAxis.z, zAxis.z, 0,
- 0, 0, 0, 1
-
+ matrix consisting of the three provided basis vectors:
+
+
@@ -311,13 +405,136 @@ [method:this makeRotationFromQuaternion]( [param:Quaternion q] )
[page:Quaternion q], as outlined
[link:https://en.wikipedia.org/wiki/Rotation_matrix#Quaternion here]. The
rest of the matrix is set to the identity. So, given [page:Quaternion q] =
- w + xi + yj + zk, the resulting matrix will be:
-
-1-2y²-2z² 2xy-2zw 2xz+2yw 0
-2xy+2zw 1-2x²-2z² 2yz-2xw 0
-2xz-2yw 2yz+2xw 1-2x²-2y² 0
- 0 0 0 1
-
+ w + xi + yj + zk, the resulting matrix will be:
+
+
[method:this makeRotationX]( [param:Float theta] )
@@ -325,13 +542,61 @@ [method:this makeRotationX]( [param:Float theta] )
[page:Float theta] — Rotation angle in radians.
Sets this matrix as a rotational transformation around the X axis by
- [page:Float theta] (θ) radians. The resulting matrix will be:
-
- 1 0 0 0
- 0 cos(θ) -sin(θ) 0
- 0 sin(θ) cos(θ) 0
- 0 0 0 1
-
+ [page:Float theta] (θ) radians. The resulting matrix will be:
+
+
[method:this makeRotationY]( [param:Float theta] )
@@ -339,11 +604,61 @@ [method:this makeRotationY]( [param:Float theta] )
[page:Float theta] — Rotation angle in radians.
Sets this matrix as a rotational transformation around the Y axis by
- [page:Float theta] (θ) radians. The resulting matrix will be:
-
- cos(θ) 0 sin(θ) 0 0 1 0 0 -sin(θ) 0 cos(θ) 0 0 0
- 0 1
-
+ [page:Float theta] (θ) radians. The resulting matrix will be:
+
+
[method:this makeRotationZ]( [param:Float theta] )
@@ -351,13 +666,61 @@ [method:this makeRotationZ]( [param:Float theta] )
[page:Float theta] — Rotation angle in radians.
Sets this matrix as a rotational transformation around the Z axis by
- [page:Float theta] (θ) radians. The resulting matrix will be:
-
-cos(θ) -sin(θ) 0 0
-sin(θ) cos(θ) 0 0
- 0 0 1 0
- 0 0 0 1
-
+ [page:Float theta] (θ) radians. The resulting matrix will be:
+
+
@@ -368,12 +731,40 @@
[page:Float y] - the amount to scale in the Y axis.
[page:Float z] - the amount to scale in the Z axis.
- Sets this matrix as scale transform:
-
-x, 0, 0, 0,
-0, y, 0, 0,
-0, 0, z, 0,
-0, 0, 0, 1
+ Sets this matrix as scale transform:
+
+
@@ -388,12 +779,40 @@
[page:Float zx] - the amount to shear Z by X.
[page:Float zy] - the amount to shear Z by Y.
- Sets this matrix as a shear transform:
-
-1, yx, zx, 0,
-xy, 1, zy, 0,
-xz, yz, 1, 0,
-0, 0, 0, 1
+ Sets this matrix as a shear transform:
+
+
[method:this makeTranslation]( [param:Vector3 v] )
@@ -401,12 +820,40 @@
[method:this makeTranslation]( [param:Float x], [param:Float y], [param:Float z] ) // optional API
- Sets this matrix as a translation transform from vector [page:Vector3 v], or numbers [page:Float x], [page:Float y] and [page:Float z]:
-
-1, 0, 0, x,
-0, 1, 0, y,
-0, 0, 1, z,
-0, 0, 0, 1
+ Sets this matrix as a translation transform from vector [page:Vector3 v], or numbers [page:Float x], [page:Float y] and [page:Float z]:
+
+
[method:this multiply]( [param:Matrix4 m] )
@@ -449,18 +896,75 @@
Sets the position component for this matrix from vector [page:Vector3 v],
without affecting the rest of the matrix - i.e. if the matrix is
- currently:
-
-a, b, c, d,
-e, f, g, h,
-i, j, k, l,
-m, n, o, p
- This becomes:
-
-a, b, c, v.x,
-e, f, g, v.y,
-i, j, k, v.z,
-m, n, o, p
+ currently:
+
+
+
+ This becomes:
+
+
diff --git a/docs/api/it/math/Matrix4.html b/docs/api/it/math/Matrix4.html
index adb460937354cb..550a0ae2a70917 100644
--- a/docs/api/it/math/Matrix4.html
+++ b/docs/api/it/math/Matrix4.html
@@ -164,19 +164,85 @@ [method:Boolean equals]( [param:Matrix4 m] )
[method:this extractBasis]( [param:Vector3 xAxis], [param:Vector3 yAxis], [param:Vector3 zAxis] )
Estrae la [link:https://en.wikipedia.org/wiki/Basis_(linear_algebra) base] di questa matrice
- nei tre vettori asse forniti. Se questa matrice è:
-
-a, b, c, d,
-e, f, g, h,
-i, j, k, l,
-m, n, o, p
-
- allora [page:Vector3 xAxis], [page:Vector3 yAxis], [page:Vector3 zAxis] saranno impostate a:
-
-xAxis = (a, e, i)
-yAxis = (b, f, j)
-zAxis = (c, g, k)
-
+ nei tre vettori asse forniti. Se questa matrice è:
+
+
+
+ then the [page:Vector3 xAxis], [page:Vector3 yAxis], [page:Vector3 zAxis]
+ will be set to:
+
+ ,
+
+ , and
+
+
[method:this extractRotation]( [param:Matrix4 m] )
@@ -226,13 +292,40 @@ [method:this makeRotationAxis]( [param:Vector3 axis], [param:Float theta] )<
[method:this makeBasis]( [param:Vector3 xAxis], [param:Vector3 yAxis], [param:Vector3 zAxis] )
Imposta questo sulla matrice di [link:https://en.wikipedia.org/wiki/Basis_(linear_algebra) base] composta dai tre
- vettori di base forniti:
-
-xAxis.x, yAxis.x, zAxis.x, 0,
-xAxis.y, yAxis.y, zAxis.y, 0,
-xAxis.z, yAxis.z, zAxis.z, 0,
-0, 0, 0, 1
-
+ vettori di base forniti:
+
+
[method:this makePerspective]( [param:Float left], [param:Float right], [param:Float top], [param:Float bottom], [param:Float near], [param:Float far] )
@@ -258,13 +351,136 @@ [method:this makeRotationFromQuaternion]( [param:Quaternion q] )
Imposta il componente rotazinoe di questa matrice alla rotazione specificata da [page:Quaternion q], come
descritto [link:https://en.wikipedia.org/wiki/Rotation_matrix#Quaternion qui].
- Il resto della matrice è impostato all'identità. Quindi, dato [page:Quaternion q] = w + xi + yj + zk, la matrice risultante sarà:
-
-1-2y²-2z² 2xy-2zw 2xz+2yw 0
-2xy+2zw 1-2x²-2z² 2yz-2xw 0
-2xz-2yw 2yz+2xw 1-2x²-2y² 0
-0 0 0 1
-
+ Il resto della matrice è impostato all'identità. Quindi, dato [page:Quaternion q] = w + xi + yj + zk, la matrice risultante sarà:
+
+
[method:this makeRotationX]( [param:Float theta] )
@@ -272,13 +488,61 @@ [method:this makeRotationX]( [param:Float theta] )
[page:Float theta] — Angolo rotazione in radianti.
Imposta questa matrice come una trasformazione rotazionale attorno all'asse X in radianti theta [page:Float theta] (θ).
- La matrice risultante sarà:
-
-1 0 0 0
-0 cos(θ) -sin(θ) 0
-0 sin(θ) cos(θ) 0
-0 0 0 1
-
+ La matrice risultante sarà:
+
+
[method:this makeRotationY]( [param:Float theta] )
@@ -286,13 +550,61 @@ [method:this makeRotationY]( [param:Float theta] )
[page:Float theta] — Angolo rotazione in radianti.
Imposta questa matrice come una trasformazione rotazionale attorno all'asse Y in radianti theta [page:Float theta] (θ).
- La matrice risultante sarà:
-
-cos(θ) 0 sin(θ) 0
-0 1 0 0
--sin(θ) 0 cos(θ) 0
-0 0 0 1
-
+ La matrice risultante sarà:
+
+
[method:this makeRotationZ]( [param:Float theta] )
@@ -300,13 +612,61 @@ [method:this makeRotationZ]( [param:Float theta] )
[page:Float theta] — Angolo rotazione in radianti.
Imposta questa matrice come una trasformazione rotazionale attorno all'asse Z in radianti theta [page:Float theta] (θ).
- La matrice risultante sarà:
-
-cos(θ) -sin(θ) 0 0
-sin(θ) cos(θ) 0 0
-0 0 1 0
-0 0 0 1
-
+ La matrice risultante sarà:
+
+
[method:this makeScale]( [param:Float x], [param:Float y], [param:Float z] )
@@ -315,13 +675,40 @@ [method:this makeScale]( [param:Float x], [param:Float y], [param:Float z] )
[page:Float y] - la quantità da scalare sull'asse Y.
[page:Float z] - la quantità da scalare sull'asse Z.
- Imposta questa matrice come trasformazione di scala:
-
-x, 0, 0, 0,
-0, y, 0, 0,
-0, 0, z, 0,
-0, 0, 0, 1
-
+ Imposta questa matrice come trasformazione di scala:
+
+
[method:this makeShear]( [param:Float xy], [param:Float xz], [param:Float yx], [param:Float yz], [param:Float zx], [param:Float zy] )
@@ -333,13 +720,40 @@ [method:this makeShear]( [param:Float xy], [param:Float xz], [param:Float yx
[page:Float zx] - la quantità di taglio di Z per X.
[page:Float zy] - la quantità di taglio di Z per Y.
- Imposta questa matrice come trasformata di taglio:
-
-1, yx, zx, 0,
-xy, 1, zy, 0,
-xz, yz, 1, 0,
-0, 0, 0, 1
-
+ Imposta questa matrice come trasformata di taglio:
+
+
[method:this makeTranslation]( [param:Vector3 v] )
@@ -347,13 +761,40 @@
[method:this makeTranslation]( [param:Float x], [param:Float y], [param:Float z] ) // optional API
- Imposta questa matrice come una trasformata di traslazione dal vettore [page:Vector3 v]:
-
-1, 0, 0, x,
-0, 1, 0, y,
-0, 0, 1, z,
-0, 0, 0, 1
-
+ Imposta questa matrice come una trasformata di traslazione dal vettore [page:Vector3 v]:
+
+
[method:this multiply]( [param:Matrix4 m] )
@@ -384,20 +825,75 @@ [method:this setPosition]( [param:Vector3 v] )
[method:this setPosition]( [param:Float x], [param:Float y], [param:Float z] ) // optional API
Imposta la componente posizione per questa matrice dal vettore [page:Vector3 v], senza influenzare
- il resto della matrice - ovvero se la matrice è attulmente:
-
-a, b, c, d,
-e, f, g, h,
-i, j, k, l,
-m, n, o, p
-
-Questa diventa:
-
-a, b, c, v.x,
-e, f, g, v.y,
-i, j, k, v.z,
-m, n, o, p
-
+ il resto della matrice - ovvero se la matrice è attulmente:
+
+
+
+ Questa diventa:
+
+
[method:Array toArray]( [param:Array array], [param:Integer offset] )
diff --git a/docs/api/zh/math/Matrix4.html b/docs/api/zh/math/Matrix4.html
index 2a2251026d4c27..45434ff13a70a9 100644
--- a/docs/api/zh/math/Matrix4.html
+++ b/docs/api/zh/math/Matrix4.html
@@ -152,19 +152,84 @@ [method:Boolean equals]( [param:Matrix4 m] )
[method:this extractBasis]( [param:Vector3 xAxis], [param:Vector3 yAxis], [param:Vector3 zAxis] )
将矩阵的基向量[link:https://en.wikipedia.org/wiki/Basis_(linear_algebra) basis]提取到指定的3个轴向量中。
- 如果矩阵如下:
-
-a, b, c, d,
-e, f, g, h,
-i, j, k, l,
-m, n, o, p
-
- 然后x轴y轴z轴被设为:
-
-xAxis = (a, e, i)
-yAxis = (b, f, j)
-zAxis = (c, g, k)
-
+ 如果矩阵如下:
+
+
+
+ 然后x轴y轴z轴被设为:
+
+ ,
+
+ , and
+
+
[method:this extractRotation]( [param:Matrix4 m] )
@@ -208,13 +273,40 @@ [method:this makeRotationAxis]( [param:Vector3 axis], [param:Float theta] )<
[method:this makeBasis]( [param:Vector3 xAxis], [param:Vector3 yAxis], [param:Vector3 zAxis] )
- 通过给定的三个向量设置该矩阵为基矩阵[link:https://en.wikipedia.org/wiki/Basis_(linear_algebra) basis]:
-
-xAxis.x, yAxis.x, zAxis.x, 0,
-xAxis.y, yAxis.y, zAxis.y, 0,
-xAxis.z, yAxis.z, zAxis.z, 0,
-0, 0, 0, 1
-
+ 通过给定的三个向量设置该矩阵为基矩阵[link:https://en.wikipedia.org/wiki/Basis_(linear_algebra) basis]:
+
+
[method:this makePerspective]( [param:Float left], [param:Float right], [param:Float top], [param:Float bottom], [param:Float near], [param:Float far] )
@@ -239,13 +331,136 @@ [method:this makeRotationFromEuler]( [param:Euler euler] )
[method:this makeRotationFromQuaternion]( [param:Quaternion q] )
将这个矩阵的旋转分量设置为四元数[page:Quaternion q]指定的旋转,如下链接所诉[link:https://en.wikipedia.org/wiki/Rotation_matrix#Quaternion here]。
- 矩阵的其余部分被设为单位矩阵。因此,给定四元数[page:Quaternion q] = w + xi + yj + zk,得到的矩阵为:
-
-1-2y²-2z² 2xy-2zw 2xz+2yw 0
-2xy+2zw 1-2x²-2z² 2yz-2xw 0
-2xz-2yw 2yz+2xw 1-2x²-2y² 0
-0 0 0 1
-
+ 矩阵的其余部分被设为单位矩阵。因此,给定四元数[page:Quaternion q] = w + xi + yj + zk,得到的矩阵为:
+
+
[method:this makeRotationX]( [param:Float theta] )
@@ -253,13 +468,61 @@ [method:this makeRotationX]( [param:Float theta] )
[page:Float theta] — Rotation angle in radians.
把该矩阵设置为绕x轴旋转弧度[page:Float theta] (θ)大小的矩阵。
- 结果如下:
-
-1 0 0 0
-0 cos(θ) -sin(θ) 0
-0 sin(θ) cos(θ) 0
-0 0 0 1
-
+ 结果如下:
+
+
[method:this makeRotationY]( [param:Float theta] )
@@ -267,13 +530,61 @@ [method:this makeRotationY]( [param:Float theta] )
[page:Float theta] — Rotation angle in radians.
把该矩阵设置为绕Y轴旋转弧度[page:Float theta] (θ)大小的矩阵。
- 结果如下:
-
-cos(θ) 0 sin(θ) 0
-0 1 0 0
--sin(θ) 0 cos(θ) 0
-0 0 0 1
-
+ 结果如下:
+
+
[method:this makeRotationZ]( [param:Float theta] )
@@ -281,13 +592,61 @@ [method:this makeRotationZ]( [param:Float theta] )
[page:Float theta] — Rotation angle in radians.
把该矩阵设置为绕z轴旋转弧度[page:Float theta] (θ)大小的矩阵。
- 结果如下:
-
-cos(θ) -sin(θ) 0 0
-sin(θ) cos(θ) 0 0
-0 0 1 0
-0 0 0 1
-
+ 结果如下:
+
+
[method:this makeScale]( [param:Float x], [param:Float y], [param:Float z] )
@@ -296,13 +655,40 @@ [method:this makeScale]( [param:Float x], [param:Float y], [param:Float z] )
[page:Float y] - 在Y轴方向的缩放比。
[page:Float z] - 在Z轴方向的缩放比。
- 将这个矩阵设置为缩放变换:
-
-x, 0, 0, 0,
-0, y, 0, 0,
-0, 0, z, 0,
-0, 0, 0, 1
-
+ 将这个矩阵设置为缩放变换:
+
+
[method:this makeShear]( [param:Float x], [param:Float y], [param:Float z] )
@@ -311,13 +697,40 @@ [method:this makeShear]( [param:Float x], [param:Float y], [param:Float z] )
[page:Float y] - 在Y轴上剪切的量。
[page:Float z] - 在Z轴上剪切的量。
- 将此矩阵设置为剪切变换:
-
-1, y, z, 0,
-x, 1, z, 0,
-x, y, 1, 0,
-0, 0, 0, 1
-
+ 将此矩阵设置为剪切变换:
+
+
[method:this makeTranslation]( [param:Vector3 v] )
@@ -325,13 +738,40 @@
[method:this makeTranslation]( [param:Float x], [param:Float y], [param:Float z] ) // optional API
- 取传入参数[param:Vector3 v]中值设设置该矩阵为平移变换:
-
-1, 0, 0, x,
-0, 1, 0, y,
-0, 0, 1, z,
-0, 0, 0, 1
-
+ 取传入参数[param:Vector3 v]中值设设置该矩阵为平移变换:
+
+
[method:this multiply]( [param:Matrix4 m] )
@@ -360,20 +800,75 @@ [method:this setFromMatrix3]( [param:Matrix3 m] )
[method:this setPosition]( [param:Vector3 v] )
[method:this setPosition]( [param:Float x], [param:Float y], [param:Float z] ) // optional API
- 取传入参数[param:Vector3 v]中值设置该矩阵的位置分量,不影响该矩阵的其余部分——即,如果该矩阵当前为:
-
-a, b, c, d,
-e, f, g, h,
-i, j, k, l,
-m, n, o, p
-
-变成:
-
-a, b, c, v.x,
-e, f, g, v.y,
-i, j, k, v.z,
-m, n, o, p
-
+ 取传入参数[param:Vector3 v]中值设置该矩阵的位置分量,不影响该矩阵的其余部分——即,如果该矩阵当前为:
+
+
+
+ 变成:
+
+
[method:Array toArray]( [param:Array array], [param:Integer offset] )