@@ -1980,7 +1980,7 @@ Example of function partial application as argument, positional argument passing
19801980 <strong>input</strong> Real A;
19811981 <strong>input</strong> Real w;
19821982<strong>algorithm</strong>
1983- y:= A*Modelica.Math.sin(w*x);
1983+ y := A*Modelica.Math.sin(w*x);
19841984<strong>end</strong> Sine;
19851985
19861986//Call with function partial application as named input argument:
@@ -2000,7 +2000,7 @@ application:
20002000 <strong>input</strong> Real x; // Note: x is now last in argument list.
20012001 <strong>output</strong> Real y;
20022002<strong>algorithm</strong>
2003- y:= A*Modelica.Math.sin(w*x);
2003+ y := A*Modelica.Math.sin(w*x);
20042004<strong>end</strong> Sine2;
20052005
20062006// The partially evaluated Sine2 has only one argument:
@@ -2041,7 +2041,7 @@ a component, according to case (d) above:
20412041<strong>algorithm</strong>
20422042 // Case (b) and (c)
20432043 integral := quadrature(x1, x2,
2044- <strong>function</strong> quadratureOnce(y1=y1, y2=y2, integrand=integrand);
2044+ <strong>function</strong> quadratureOnce(y1=y1, y2=y2, integrand=integrand)) ;
20452045<strong>end</strong> surfaceQuadrature;
20462046</pre></blockquote>
20472047</html>" ));
@@ -2085,7 +2085,7 @@ Define specialized class <em>function</em>
20852085 <strong>input</strong> Real x;
20862086 <strong>output</strong> Real y;
20872087<strong>algorithm</strong>
2088- y = <strong>if abs</strong>(x) < Modelica.Constants.eps <strong>then</strong> 1 <strong>else</strong> Modelica.Math.sin(x)/x;
2088+ y : = <strong>if abs</strong>(x) < Modelica.Constants.eps <strong>then</strong> 1 <strong>else</strong> Modelica.Math.sin(x)/x;
20892089<strong>end</strong> si;</pre></blockquote>
20902090
20912091<div>
@@ -2207,7 +2207,7 @@ can also have an optional functional default value. Example:
22072207 // With default: input Integrand integrand := Modelica.Math.sin;
22082208 <strong>output</strong> Real integral;
22092209<strong>algorithm</strong>
2210- integral :=(x2-x1)*(integrand(x1) + integrand(x2))/2;
2210+ integral := (x2-x1)*(integrand(x1) + integrand(x2))/2;
22112211<strong>end</strong> quadrature;
22122212
22132213<strong>partial function</strong> Integrand
@@ -2238,7 +2238,7 @@ to the corresponding formal parameter of function type. Example:
22382238<strong>function</strong> Parabola
22392239 <strong>extends</strong> Integrand;
22402240<strong>algorithm</strong>
2241- y = x*x;
2241+ y : = x*x;
22422242<strong>end</strong> Parabola;
22432243
22442244area = quadrature(0, 1, Parabola);
0 commit comments