diff --git a/torchrec/distributed/mc_modules.py b/torchrec/distributed/mc_modules.py index fc326d7d6..2634c3983 100644 --- a/torchrec/distributed/mc_modules.py +++ b/torchrec/distributed/mc_modules.py @@ -416,7 +416,7 @@ def _create_managed_collision_modules( ), f"Shared feature is not supported. {num_sharding_features=}, {self._sharding_per_table_feature_splits[-1]=}" if self._sharding_features[-1] != sharding.feature_names(): - logger.warn( + logger.warning( "The order of tables of this sharding is altered due to grouping: " f"{self._sharding_features[-1]=} vs {sharding.feature_names()=}" ) @@ -1122,7 +1122,7 @@ def _create_managed_collision_modules( ), f"Shared feature is not supported. {num_sharding_features=}, {self._sharding_per_table_feature_splits[-1]=}" if self._sharding_features[-1] != sharding.feature_names(): - logger.warn( + logger.warning( "The order of tables of this sharding is altered due to grouping: " f"{self._sharding_features[-1]=} vs {sharding.feature_names()=}" ) diff --git a/torchrec/distributed/model_tracker/model_delta_tracker.py b/torchrec/distributed/model_tracker/model_delta_tracker.py index cf71e17e4..905bf7648 100644 --- a/torchrec/distributed/model_tracker/model_delta_tracker.py +++ b/torchrec/distributed/model_tracker/model_delta_tracker.py @@ -100,7 +100,9 @@ def __init__( for fqn, feature_names in self._fqn_to_feature_map.items(): for feature_name in feature_names: if feature_name in self.feature_to_fqn: - logger.warn(f"Duplicate feature name: {feature_name} in fqn {fqn}") + logger.warning( + f"Duplicate feature name: {feature_name} in fqn {fqn}" + ) continue self.feature_to_fqn[feature_name] = fqn logger.info(f"feature_to_fqn: {self.feature_to_fqn}") diff --git a/torchrec/distributed/planner/enumerators.py b/torchrec/distributed/planner/enumerators.py index 7d0be906d..0ebe7d12f 100644 --- a/torchrec/distributed/planner/enumerators.py +++ b/torchrec/distributed/planner/enumerators.py @@ -279,7 +279,7 @@ def _filter_sharding_types( set(constrained_sharding_types) & set(allowed_sharding_types) ) if not filtered_sharding_types: - logger.warn( + logger.warning( "No available sharding types after applying user provided " f"constraints for {name}. Constrained sharding types: " f"{constrained_sharding_types}, allowed sharding types: " @@ -326,7 +326,7 @@ def _filter_compute_kernels( filtered_compute_kernels.remove(EmbeddingComputeKernel.DENSE.value) if not filtered_compute_kernels: - logger.warn( + logger.warning( "No available compute kernels after applying user provided " f"constraints for {name}. Constrained compute kernels: " f"{constrained_compute_kernels}, allowed compute kernels: " diff --git a/torchrec/distributed/planner/tests/test_enumerators.py b/torchrec/distributed/planner/tests/test_enumerators.py index 0ef9141b4..5adead69a 100644 --- a/torchrec/distributed/planner/tests/test_enumerators.py +++ b/torchrec/distributed/planner/tests/test_enumerators.py @@ -731,7 +731,7 @@ def test_filter_sharding_types_mch_ebc_no_available(self) -> None: ) sharder = ManagedCollisionEmbeddingBagCollectionSharder() - with self.assertWarns(Warning): + with self.assertLogs(level="WARNING"): allowed_sharding_types = enumerator._filter_sharding_types( "table_0", sharder.sharding_types("cuda") ) @@ -811,7 +811,7 @@ def test_filter_compute_kernels_mch_ebc_no_available(self) -> None: sharder = ManagedCollisionEmbeddingBagCollectionSharder() sharding_type = ShardingType.ROW_WISE.value - with self.assertWarns(Warning): + with self.assertLogs(level="WARNING"): allowed_compute_kernels = enumerator._filter_compute_kernels( "table_0", sharder.compute_kernels(sharding_type, "cuda"), sharding_type ) diff --git a/torchrec/distributed/train_pipeline/utils.py b/torchrec/distributed/train_pipeline/utils.py index a61609eae..de030ad46 100644 --- a/torchrec/distributed/train_pipeline/utils.py +++ b/torchrec/distributed/train_pipeline/utils.py @@ -402,7 +402,7 @@ def _rewrite_model( # noqa C901 input_model.module = graph_model if non_pipelined_sharded_modules: - logger.warn( + logger.warning( "Sharded modules were not pipelined: %s. " + "This should be fixed for pipelining to work to the full extent.", ", ".join(non_pipelined_sharded_modules), diff --git a/torchrec/metrics/throughput.py b/torchrec/metrics/throughput.py index 758250426..edbaec119 100644 --- a/torchrec/metrics/throughput.py +++ b/torchrec/metrics/throughput.py @@ -99,7 +99,7 @@ def __init__( ) if window_seconds > MAX_WINDOW_TS: - logger.warn( + logger.warning( f"window_seconds is greater than {MAX_WINDOW_TS}, capping to {MAX_WINDOW_TS} to make sure window_qps is not staled" ) window_seconds = MAX_WINDOW_TS diff --git a/torchrec/sparse/jagged_tensor.py b/torchrec/sparse/jagged_tensor.py index 9cda3f9dd..60fe5dd63 100644 --- a/torchrec/sparse/jagged_tensor.py +++ b/torchrec/sparse/jagged_tensor.py @@ -2688,7 +2688,7 @@ def to_dict(self) -> Dict[str, JaggedTensor]: Dict[str, JaggedTensor]: dictionary of JaggedTensor for each key. """ if not torch.jit.is_scripting() and is_non_strict_exporting(): - logger.warn( + logger.warning( "Trying to non-strict torch.export KJT to_dict, which is extremely slow and not recommended!" ) _jt_dict = _maybe_compute_kjt_to_jt_dict(